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Abstract

In this paper we consider a supply function model of an electricity market where

strategic �rms have capacity constraints. We show that if �rms have heterogeneous

cost functions and capacity constraints then the di�erential equation approach to �nd-

ing the equilibrium supply function may not be e�ective by itself because it produces

supply functions that fail to be non-decreasing. Even when the di�erential equation

approach yields solutions that satisfy the non-decreasing constraints, many of the equi-

libria are unstable, restricting the range of the equilibria that are likely to be observed

in practice. We analyze the non-decreasing constraints and characterize piece-wise

continuously di�erentiable equilibria. To �nd stable equilibria, we numerically solve

for the equilibrium by iterating in the function space of allowable supply functions.

Using a numerical example based on supply in the England and Wales market in 1999,

we investigate the potential for multiple equilibria and the interaction of capacity con-

straints, price caps, and the length of the time horizon over which bids must remain

unchanged. We empirically con�rm that the range of stable supply function equilibria

can be very small when there are binding price caps. Even when price caps are not

binding, the range of stable equilibria is relatively small. We �nd that requiring supply

functions to remain �xed over an extended time horizon having a large variation in

demand reduces the incentive to mark up prices compared to the Cournot outcome.
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1 Introduction

Supply function equilibrium models were developed by Klemperer and Meyer in [1] to an-

alyze markets where agents bid a schedule of price-quantities. The original motivation was

to handle random shocks in demand that could be characterized by a continuous random

variable having convex support. Their approach sets up coupled di�erential equations that,

under certain circumstances, characterize the equilibrium.

In recent papers, supply function equilibrium models have been applied to analysis of

electricity markets [2, 3, 4, 5, 6, 7, 8, 9]. This approach, pioneered by Green and Newbery [2],

reinterprets the probability distribution of random shocks in [1] to be an electricity load-

duration characteristic. The support of the probability distribution becomes the range of

demands in the load-duration characteristic.

Unfortunately, without restrictive assumptions on the nature of the costs and capacity

constraints, on the number of �rms, or on the form of the allowed bid functions, it has proven

di�cult to �nd equilibria in supply functions. For example, in [8], to obtain a convenient

characterization of the equilibrium, the authors assume that each bidder must submit either:

� an a�ne supply function or

� a piece-wise a�ne supply function where the number of pieces is relatively small.

In the case of minimum capacity constraints, [8] exhibits a piece-wise a�ne supply function

equilibrium. Representing maximum capacity constraints prompts an ad hoc approach in [8]

that attempts to approximate the equilibrium supply functions when there are maximum

capacity constraints.

In this paper, we relax the assumption of [8] that the bidders submit a supply function

consisting of a small number of pieces. We analyze the properties of the equilibrium and

also numerically estimate candidate equilibrium supply functions by iterating in the function

space of allowable bids; however, in practice this means that we still must approximate the

supply functions with a piece-wise a�ne and continuous function, albeit having a large

number of pieces.

We qualify the numerical estimates of the equilibria as \candidate" because the functions

we calculate cannot be guaranteed to be equilibria without a further check of global opti-

mality of each bidder's bid (given everyone else's bid.) We do not perform this even more

computationally intensive calculation. However, as argued in [9], the \limited optimizing

behavior" that we simulate may nevertheless be a reasonable model for gaining some insight

about plausible bidder behavior.

We investigate one basic criticism of supply function equilibrium analysis: that there are

multiple supply function equilibria so that the approach has little predictive value. As a

�rst response to this criticism, Green and Newbery [2, x II.B] note that capacity constraints

tend to limit the range of equilibria. They describe conditions for uniqueness in an extreme

case where the capacity constraints are so tight that the price at peak demand in the supply

function equilibrium is as high as the price under Cournot competition.

We �nd that although there is a continuum of equilibria in the uncapacitated case, the

range of equilibria is less likely to be problematic when there are moderately tight capacity

constraints and price caps. This echos the observations by Green and Newbery but goes
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further in that we �nd that the presence of price caps yields unique equilibria with prices

well below the Cournot price. Moreover, we show that even when there is a wide range

of equilibria, many of these equilibria are unstable and so are unlikely to be observed in

practice. Our analysis con�rms a suggestion made in [10] that \an equilibrium is less likely

to be stable if it involves generators o�ering power at prices very much higher than their

marginal costs" [10, page 20].

We then use the numerical calculations to explore the interaction of three issues:

1. the e�ect of price caps (set above the maximum marginal cost of production) in an

institutional framework where �rms are obliged to supply all their available generation

capacity whenever the price reaches the price cap,

2. the e�ect of maximum capacity constraints on strategic behavior, and

3. the e�ect of requiring that supply function bids be �xed over an extended time horizon

during which demand varies essentially continuously.

We discuss these issues in the following paragraphs.

The assumption that bidders must sell all their capacity at the price cap does not accu-

rately represent those markets with price caps where either:

� the bidders have alternate sales opportunities that are not price-capped or

� the bidders can otherwise declare their capacity to be unavailable to the market.

However, the assumption should provide a lower bound on the amount of capacity withhold-

ing that might occur in a real market. Our assumption is intended to reect the intent of

regulatory authorities in setting price caps: presumably they expect that all capacity will

be o�ered whenever the price reaches the price cap.

We also consider the alternative of a bid cap, where there is a limit on the bid prices but

the market prices can rise above this level to limit the demand. Bid caps have been proposed

as a means to limit market power when there are transmission constraints, while also allowing

prices to rise to high levels to reect the true cost of a constraint. We investigate their

application in transmission unconstrained systems where the generation capacity is limited.

Generation maximum capacity constraints are pervasive in electricity markets. As dis-

cussed in [8], the presence of capacity constraints complicates the determination of conditions

for pro�t maximization because the pro�t functions are typically non-concave. We will dis-

cuss this issue in the context of a pro�t function de�ned over a time horizon.

Some markets, such as the England and Wales market until 2001, explicitly require

bidders to submit a single supply function valid (essentially) for a whole day. Requiring

supply function bids to be �xed over an extended time horizon means that bidders must

balance the desire to withhold capacity when prices are high against sales opportunities

at lower prices. In contrast, other markets, such as the (now defunct) California Power

Exchange, allow di�erent bid functions every hour.

Issues such as start-up costs, ramp rate limits, and environmental constraints couple

generation costs from hour to hour. Moreover, capacity can change due to outages. However,

the production cost function of an in-service generator may not change signi�cantly on an
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hour by hour basis, so that the exibility to bid di�erent supply functions on an hour by

hour basis is not obviously justi�ed by technical issues, except to the extent that start-up

costs, ramp rate limits, environmental constraints, and changing fuel costs are signi�cant.

We consider the incentives due to requiring consistent bids over an extended time horizon;

however, we do not consider how to handle start-up costs, ramp rates and environmental

constraints nor the institutional oversight required to enforce bid consistency [2, x II.B].

There are admitted di�culties in trying to enforce consistency of bids. For example, in the

England and Wales market, although bids were �xed over a day, declared capacities could

be changed, e�ectively rede�ning the bid. Also, day-ahead markets typically have hourly or

real-time markets. Implicit in our analysis is the assumption that most volume is traded in

the day-ahead market.

We assume that the load-duration characteristic is continuous over the time horizon. This

is analogous to the Klemperer and Meyer assumption that the random variable representing

the demand shock has convex support [1].

To investigate the three issues of price caps, maximum capacity constraints, and the

requirement to bid supply functions that are consistent over an extended time horizon,

we perform numerical calculations using cost data that are based on that in [8] for the

�ve strategic �rm industry in England and Wales subsequent to the 1999 divestiture. Our

demand and price cap assumptions are, however, �ctitious and simply chosen to highlight

the e�ects of capacity constraints, price caps, and an extended time horizon. Naturally,

caution should be exercised in extrapolating the numerical results to other cases.

We assume that all energy is sold at the marginal clearing price. More recently, the

England and Wales market has changed to a pay-as-bid structure; however, we have not

modeled this new market structure.

The main �ndings of this work are:

� In markets with �rms having heterogeneous cost functions and capacity constraints,

the di�erential equation approach to �nding the equilibrium supply function may not

be e�ective by itself.

� The range of supply function equilibria can be very small when there are binding price

caps. Even when price caps are not binding, the range of stable equilibria appears small

compared to the di�erence between, say, the competitive and the Cournot outcomes.

� Requiring supply functions to remain �xed over an extended time horizon having a

large and continuous variation in demand appears to reduce the incentive to mark up

prices compared to the Cournot outcome.

� A single price cap imposed at all times may have signi�cant e�ects both on- and o�-

peak.

The third observation is consistent with the results in [11], which used an \adaptive agent"

approach to evaluate the incentives of daily and hourly bidding in the England and Wales

market.

The outline of the paper is as follows. The formulation is described in section 2, with

the assumptions and formulation essentially standard from the supply function equilibrium
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literature. Section 3 then explores the approach to solving the equilibrium conditions as a

coupled di�erential equation. In section 4 we discuss some of the assumptions of the model

in detail, highlighting three issues that are critical in the analysis of section 3:

1. consistency of bids across the time horizon,

2. continuity of the load-duration characteristic, and

3. the nature of the marginal cost functions.

We use a three �rm example based on an example in [9] to illustrate the e�ect of requiring

consistency of bids across the time horizon on the range of equilibria.

We next consider stability. There are various time scales in the operation of an electric

power system, from sub-second to longer than a day. At the sub-second time scale, the

electromechanical interactions must be analyzed for stability. At a slightly slower time scale,

short-term electric power markets have dynamics that can potentially interact with the

electromechanical dynamics. Alvarado et al. analyze these interactions [12]. Our interest

is in the stability of the economic equilibria. Alvarado considers electricity market stability

in a quantity bidding context [13]. Anderson and Xu considers stability of supply function

equilibria in [10].

In section 5, we analyze the stability of the supply function equilibria calculated using

the di�erential equation approach and present a theorem that characterizes unstable supply

function equilibria. This theorem sheds light on why the apparent multiplicity of supply

function equilibria may not be as serious a problem as implied by the apparently wide range

of possible solutions of the di�erential equations. We again use the three �rm example to

illustrate how the stability analysis restricts the range of equilibria that are likely to be

observed in practice.

In section 6 we then present a theorem that suggests why the coupled di�erential equation

approach is not likely to be fruitful in the case of �rms having capacity constraints and

asymmetric cost functions. The reason is that the solutions of the di�erential equations will

not usually satisfy the requirement that the supply functions be non-decreasing across the

range of realized prices. We illustrate this theorem with a �ve �rm example system based

on the England and Wales system [8].

We complement the analysis in section 6 with a further analysis of the non-decreasing

constraints in section 7. This analysis provides a characterization of the properties of piece-

wise continuously di�erentiable SFEs. In particular, we show that while the range of the

load-duration characteristic a�ects the set of possible supply function equilibria, the set

of possible equilibria is not a�ected by the detailed functional form of the load-duration

characteristic.

We use a two �rm example system to illustrate an apparently paradoxical property of

supply function equilibria. In particular, the non-decreasing constraints are not apparently

binding on the equilibrium solutions in the sense that the equilibrium solutions are typically

all strictly increasing. However, these constraints are actually binding in the sense that if the

non-decreasing constraints were relaxed for a particular �rm then its optimal response would

be di�erent. This apparent paradox is due to the fact that the pro�t function for a �rm can

be non-concave, so that apparently non-binding constraints actually cut o� solutions that

have higher pro�t than the feasible solutions.
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Section 8 describes an approach to �nding the SFEs that involves iterating in the function

space of supply functions. Section 10 discusses the detailed assumptions in the numerical

implementation, while case studies and results are presented in section 11 based on the �ve

�rm example system. The case studies �rst investigate numerically the issue of multiplicity

of equilibrium solutions. Then the e�ect of varying price caps, capacities, the load factor,

and demand are investigated. We conclude in section 12.

2 Formulation

In this section, we �rst discuss the demand, generation costs and capacities, and supply

functions. Then we discuss price and price caps, assumptions on the form of the supply

functions, the pro�t, and the equilibrium conditions. The development is standard.

2.1 Demand

Following Green [3], we assume that demand D : R+ � [0; 1]! R is a continuous function of

the form:

8p 2 R+ ; 8t 2 [0; 1]; D(p; t) = N(t)� p; (1)

where:

� p is the price,

� t is the (normalized) time,

� N : [0; 1]! R+ is the load-duration characteristic, and

�  2 R+ is minus the slope of the demand curve.

That is, the demand is assumed to be additively separable in its dependence on price and

on time. The load-duration characteristic N represents the distribution of demand over a

time horizon, with:

� the time argument t normalized so that it ranges from 0 to 1 and

� N non-increasing, so that t = 0 corresponds to peak conditions and t = 1 corresponds

to minimum demand conditions.

Figure 1 illustrates a linear load-duration characteristic.

The assumption of a linear demand-price dependence and a linear load-duration charac-

teristic is somewhat restrictive. More complicated continuous load-duration characteristics

D can easily be accommodated in the computational model we develop; however, as we will

see, the functional form of the load-duration characteristic does not a�ect the set of equilib-

ria. Other demand-price dependencies such as constant elasticity could also be represented,

but this would require more substantial modi�cations.
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Figure 1: Example load-

duration characteristic.

2.2 Generation costs and capacities

We assume that �rms are labeled i = 1; : : : ; n, with n � 2. Following [8] and except as

noted, we will assume that the total variable generation cost function Ci : R+ ! R of the

i-th �rm is quadratic and of the form:

8qi 2 R+ ; Ci(qi) =
1

2
ciq

2
i + aiqi;

with ci � 0 for each i so that the variable generation costs are convex. We therefore

ignore issues such as start-up and minimum-load costs. We use superscript 0 to represent

di�erentiation and denote the marginal cost by C 0
i, so that:

8qi 2 R+ ; C
0

i(qi) = ciqi + ai: (2)

Each �rm is assumed to be able to produce down to zero output, so that the minimum

capacity constraints are all equal to zero. Each �rm has a maximum capacity qi. That is,

the capacity constraints for the �rms require that:

8i; 0 � qi � qi: (3)

The cost function Ci represents the variable generation cost function of the whole �rm

i. Typical �rms own several generation units, including several technologies such as coal,

oil, and natural gas. Moreover, typical generation units have increasing marginal costs over

their operating range of production. Therefore, Ci can be construed as resulting from optimal

economic dispatch of the portfolio of generation owned by �rm i.

The assumption of a�ne marginal costs does not capture jumps in marginal cost from,

say, coal to gas technology and does not capture the rapid increase in marginal costs at high

output close to the maximum capacity. However, it does represent the qualitative observation

of increasing marginal cost with output. That is, we will usually have that ci > 0.
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More complicated marginal cost curves could easily be incorporated into the computa-

tional model. For example, a \barrier term" could be added to the cost function to represent

a rapid rise in marginal costs as qit approaches qi.

2.3 Supply functions

As discussed in the introduction, in the formulation of Klemperer and Meyer [1] a probability

distribution characterizes a range of random demand outcomes. Bushnell and Wolak [14]

use such a model to investigate optimal hourly responses in the California electricity market.

In contrast, Green and Newbery [2] and Green [3] model deterministic variation of de-

mand over an extended time horizon. We follow this approach, assuming that each �rm

bids a supply function into the market; that is, a function Si : R+ ! R that represents the

amount of power it is willing to produce at each speci�ed price per unit energy. (We will

restrict the functional form of the Si further in section 2.5 and de�nition 1.) The supply

function applies throughout the time horizon speci�ed by the load-duration characteristic.

For example, in the England and Wales until 2001, a new supply function could be speci�ed

for each day so that the load-duration characteristic could be considered to be of one day

duration.

Analysis of hybrid situations is also possible, where D represents the distribution of

demand over a day but the demand is not completely deterministic. In such a hybrid case,

Si still applies throughout the time horizon and responds both to the variation of demand

over the time horizon and also to the uncertainty of demand at each time.

We investigate how the load factor over the time horizon a�ects the equilibrium outcomes.

We will observe that requiring bids to be consistent over extended time horizons that include

the peak conditions and also lower demand conditions can have a signi�cant e�ect on limiting

price mark ups and equilibrium pro�ts. However, we recognize that such non-cooperative

equilibrium analyses also understate the level of market power because they neglect the

possibility of collusion and the impact of repeated interactions.

2.4 Price cap and price minimum

Price caps are in place in many electricity markets. The detailed implementation of the

price caps varies from market to market. To represent the e�ect of a generic price cap on the

market, we follow von der Fehr and Harbord [15] and assume that the market rules specify

a price cap p and that the �rms are obliged to bid supply functions that satisfy:

8i; Si(p) = qi: (4)

That is, each �rm must be willing to operate at full output if the price reaches the price cap.

Of course, �rms might also bid so that they would be prepared to produce at full output for

lower prices.

As discussed in [16, x V], enforcement of this requirement necessitates that the market

operator be prepared to curtail demand and not breach the price cap. Furthermore, the

market operator must be able to reliably estimate the maximum marginal cost of production

by any �rm in the market so that the price cap can be set above the maximum marginal

cost of production.
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We assume for convenience that there is a known minimum price p below which no �rm

would be prepared to bid any non-zero supply. For example, p = minifaig is a suitable value

since no �rms will be willing to generate for a price that falls below the marginal operating

costs at zero output of the cheapest generator.

2.5 Feasible and allowable supply functions

We require that each supply function be de�ned for every price in the interval [p; p]. To be

feasible the range of the supply function for �rm i must be contained in the interval [0; qi].

That is, the supply function for �rm i is a function Si : [p; p]! [0; qi].

Market rules require that supply functions be non-decreasing in order to be allowable as

bids. That is, p � p0 ) Si(p) � Si(p
0). Some authors appear to neglect this constraint. For

example, Bolle [17] presents supply function equilibrium solutions that fail to satisfy the non-

decreasing constraints. (See [17, Figure 2].) We will �nd that the non-decreasing constraints

must be represented in the model. (However, we will also observe that the non-decreasing

constraints are not apparently binding at the equilibrium.)

The requirement that each supply function be feasible and allowable is embodied in the

following:

De�nition 1 For each i = 1; : : : ; n, the set Si is the function space of feasible and allowable

supply functions for �rm i having domain [p; p]. That is, Si is the set of functions with

domain [p; p] that:

1. have range [0; qi] (so that all bids are feasible for allowed prices) and

2. are non-decreasing over the domain [p; p], (so that the function is an allowable supply

function).

2

In section 3 when we analyze di�erential equations with solutions that yield supply func-

tion equilibria, we will further restrict Si to be the space of di�erentiable functions that are

feasible and allowable. In this case, the non-decreasing constraints are equivalent to:

8i = 1; : : : ; n; 8p 2 [p; p]; S 0i(p) � 0;

where superscript 0 denotes di�erentiation.

2.6 Price

At each time t 2 [0; 1], the market is cleared based on the bid supply functions S = (Si)i=1;:::;n
and the demand. That is, at each time t, the price is determined by the solution of:

D(t; p) = N(t)� p =
X
i

Si(p); (5)

assuming a solution exists. All �rms receive the marginal clearing price for their supply. We

say that this price corresponds to the bid supply functions S.
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If  > 0 then for each t and each collection of choices of non-decreasing supply functions

Si 2 Si; i = 1; : : : ; n there is at most one solution to (5) having p � p � p. If there is

a solution to (5) in this range, then this solution determines the price at time t. (If Si is

discontinuous then we must modify the notion of \a solution to (5)" slightly; however, we will

not need to deal with this issue for the supply functions we exhibit.) If there is no solution

to (5) in the range p � p � p, then the realized price depends on whether the market is

assumed to have price caps or bid caps. We discuss these two cases in the next sections.

2.6.1 Price caps

In the case of price caps, the market price is never allowed to rise above p. If there is

insu�cient supply to meet the demand at price p = p then demand must be rationed. In

this case, we will assume that:

� demand is rationed to the available supply and

� all energy is sold at a price equal to the price cap.

For any particular choices Si; i = 1; : : : ; n, we can therefore implicitly solve for price as a

function of time. That is, there is a function P : [0; 1] ! [p; p], which is parameterized by

Sj 2 Sj; j = 1; : : : ; n, such that:

8t 2 [0; 1]; D(t; P (t;Sj; j = 1; : : : ; n)) �
X
i

Si(P (t;Sj; j = 1; : : : ; n)); (6)

with equality between the left and right hand sides except at times when demand rationing

occurs. For notational convenience, we will omit the explicit parameterization of the function

P and just write it with one argument, namely, the normalized time t. Occasionally, we will

need to consider price functions arising from alternative choices of supply functions. In this

case, we will distinguish the price functions by superscripts. For example, in sections 5 and 7,

we will consider supply functions S�
i ; i = 1; : : : ; n. We will denote the resulting price function

P �.

2.6.2 Bid caps

In this alternative market structure, prices can rise to higher than p = p in order to ration

demand based on price. That is, there is a cap on bids but not on prices. To implement the

bid caps, we implicitly extrapolate the supply functions to being functions Si : [p;1)! [0; qi]

by de�ning:

8i; 8p > p; Si(p) = qi:

Moreover, we relax the upper limit on price and only require that p � p. In this case there

is always a solution to (5); however, the resulting price might exceed the bid cap p.

Again, we can implicitly solve for the marginal clearing price as a function of time.

However, price is now a function P : [0; 1] ! [p;1). (In fact, with a linear demand-price

relationship, the highest realized price is always below the \choke price" of N(0)=.)
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2.7 Pro�t

By the discussion in 2.6, given a supply function Si of �rm i and also given the supply

functions of the other �rm, which we will denote by S�i = (Sj)j 6=i, we can determine the

corresponding price function P . Moreover, at any time t the accrual of pro�t per unit

(normalized) time to �rm i is �it:

�it = Si(P (t))P (t)� Ci(Si(P (t))): (7)

The pro�t �i to �rm i over the time horizon is then given by:

8Sj 2 Sj; j = 1; : : : ; n; �i(Si; S�i) =

Z 1

t=0
�itdt;

=

Z 1

t=0
Si(P (t))P (t)� Ci(Si(P (t)))dt: (8)

That is, the pro�t �i is the integral of the pro�t per unit time over the time horizon.

2.8 Equilibrium de�nition

Following standard de�nitions, we make:

De�nition 2 A collection of choices S? = (S?
i )i=1;:::;n, with S?

i 2 Si; i = 1; : : : ; n is a Nash

supply function equilibrium (SFE) if:

8i = 1; : : : ; n; S?
i 2 argmax

Si 2 Si

f�i(Si; S
?
�i)g; (9)

where S?
�i = (S?

j )j 6=i. 2

3 Equilibrium conditions as di�erential equations

In the following sections we paraphrase and interpret the supply function equilibrium deriva-

tions of Klemperer and Meyer [1], Green and Newbery [2], and Green [3], which lead to

solutions of the SFE involving the solution of a di�erential equation. This approach to solv-

ing for the SFE as a vector di�erential equation has been used with considerable success by

Green and Newbery in several cases [2, 3]:

1. all �rms having the same marginal cost functions and having the same generation

capacity constraints, which we refer to as the symmetric capacitated case,

2. �rms having a�ne but di�erent marginal cost functions but no capacity constraints,

which we refer to as the asymmetric a�ne marginal cost uncapacitated case, and

3. two �rms having asymmetric marginal cost functions and capacity constraints, which

we refer to as the asymmetric capacitated duopoly case.

We develop this approach in order to highlight why an analogous approach is unsuccessful

for calculating the SFE in the multi-�rm, capacitated, asymmetric case.
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3.1 Basic analysis

This section paraphrases the discussion in Klemperer and Meyer [1], Green and Newbery [2],

and Green [3] into our notation. The approach in those papers to �nding the SFE can be

interpreted as:

1. assuming that for each �rm i, the supply functions of all the other �rms are in�nitely

di�erentiable,

2. solving the conditions on price and quantity, at each time t, for maximizing the con-

tribution to pro�t per unit time for �rm i as de�ned in (7) and

3. �nding an in�nitely di�erentiable supply function Si that matches these conditions, if

such a function exists.

We will initially consider a general functional form for the marginal cost function. Con-

sider a �rm i and suppose that each other �rm j 6= i has committed to an in�nitely di�er-

entiable supply function Sj. At time t, the price for energy is determined by these supply

functions and the production of �rm i. Conversely, if �rm i is committed to supplying the

residual demand at any given price then the price pt at time t determines the production qit
of �rm i at time t according to:

8t 2 [0; 1]; qit = D(t)� pt �
X
j 6=i

Sj(pt);

where we ignore demand rationing for convenience. Since the supply functions Sj; j 6= i are

assumed di�erentiable, necessary conditions for maximizing the pro�t per unit time �it at

each time t over choices of price pt are:

8t 2 [0; 1]; qit = (pt � C 0

i(qit))( +
X
j 6=i

S 0j(pt)); (10)

which we can solve for each t to �nd a corresponding unique optimal pt and qit for �rm i.

If the implicit relationship between qit and pt is monotonically non-decreasing then we can

de�ne a non-decreasing function Si : fptjt 2 [0; 1]g ! [0; qi] that satis�es:

8t 2 [0; 1]; Si(pt) = qit: (11)

Applying the implicit function theorem to (10) shows that for each pt, the function Si

is in�nitely di�erentiable. If, furthermore, each value of qit in (10) satis�es the capacity

constraints (3) then we have found a supply function Si 2 Si for �rm i that achieves the

maximum pro�t per unit time for �rm i and each time t, given the supply functions of the

other �rms. Consequently, this supply function also maximizes the integrated pro�t �i for

�rm i over the time horizon and, moreover, the supply function can be calculated without

reference to the load-duration characteristic N .

In summary, we seek a function Si 2 Si that satis�es:

8p 2 Pi; Si(p) = (p� C 0

i(Si(p)))( +
X
j 6=i

S 0j(p)); (12)
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where Pi = fptjt 2 [0; 1]g; that is, Pi is the set of all prices for which Si is de�ned by (11). An

SFE obtains if we can satisfy (12) for every �rm i over a common interval of prices. That is,

if there are di�erentiable non-decreasing functions S?
i for i = 1; : : : ; n, a corresponding price

function P , and a set of prices P = fP (t)jt 2 [0; 1]g satisfying:

8i = 1; : : : ; n; 8p 2 P; S?
i (p) = (p� C 0

i(S
?
i (p)))( +

X
j 6=i

S?0
j (p)); (13)

then S?
i ; i = 1; : : : ; n, is an SFE. This is equation (4) of [3] transcribed into our notation.

Somewhat surprisingly, the conditions for the SFE do not depend on the load-duration

characteristic N . This has important implications that will be discussed in section 6.

The set P is an interval because P (t) is a non-decreasing function of t. If P = [P (1); P (0)]

is strictly contained in [p; p] then we can extend the S?
i to being functions on the whole of

[p; p] by de�ning, for example:

8i = 1; : : : ; n; 8p 2 [p; P (1)]; S?
i (p) = S?

i (P (1));

8i = 1; : : : ; n; 8p 2 [P (0); p]; S?
i (p) = S?

i (P (0)):

Klemperer and Meyer [1] characterized the conditions for existence of an SFE in the

case of symmetric cost functions with no capacity constraints and discuss the multiplicity of

equilibria. In the next section we recall the a�ne solution in the case of a�ne marginal costs

and no capacity constraints. We then return to the more general asymmetric capacitated

case.

3.2 A�ne solutions for a�ne marginal cost functions

In [3, 6, 8], linear and a�ne SFE are exhibited for the case of a�ne marginal generation

costs of the form (2). The a�ne SFE S?a�ne = (S?a�ne
i )i=1;:::;n is of the form:

8i; 8p 2 P; S?a�ne
i (p) = �i(p� ai); (14)

where �i 2 R+ ; i = 1; : : : ; n satis�es:

8i;
�i

1� ci�i
=
X
j 6=i

�j + : (15)

The a�ne SFE provides one SFE for the asymmetric a�ne marginal cost uncapacitated case.

3.3 Manipulation into standard form

If the marginal costs are not a�ne or if non-a�ne SFEs are being sought then we must

return to the conditions (13). As discussed in [8], these conditions are a set of coupled

di�erential equations that are not in the standard form for di�erential equations because of

the summation of the derivatives in (12). In [8] it was shown that the conditions can be

transformed into the following standard form of non-linear vector di�erential equations:

S?0(p) =

�
1

n� 1
11y � I

�
2
6664

S?
1
(p)

p�C0

1
(S?

1
(p))

...
S?n(p)

p�C0

n(S
?
n(p))

3
7775� 

n� 1
1; (16)
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where:

� S? = (S?
i )i=1;:::;n is the vector of supply functions and S

?0 is the derivative of this vector,

� 1 is a vector of all ones of length n,

� superscript y means transpose, and

� I is the identity matrix.

To �nd an SFE, a natural approach is to seek solutions S?
i of the di�erential equation (16)

that also satisfy S?
i 2 Si. A natural \initial condition" for the di�erential equation to

implement the price cap condition is (4), which speci�es the values of the supply functions

at p = p. The di�erential equations can then in principle be solved \backwards" from p = p

to p = p.

The speci�cation of an initial condition may partly resolve the issue of the multiplicity of

equilibria that are typically possible with supply function equilibria. That is, the price cap

provides a public signal to the �rms that may allow them to coordinate on the equilibrium

satisfying 8i; S?
i (p) = qi, which is presumably the equilibrium that yields the largest pro�t

given the price cap. If the solution of the di�erential equation for this initial condition is

non-decreasing and satis�es the capacity constraints, so that the solution of the di�erential

equation speci�es an SFE, and if there is only one such SFE then the SFE may be a plausible

outcome for the market.

3.4 Singular equations

A di�culty with solving the di�erential equation (16) is related to the terms in its right hand

side. For each �rm i, we de�ne the marginal cost conditions to be:

8p 2 [p; p]; C 0

i(Si(p)) � p:

The marginal cost conditions characterizes prices where a �rm i is selling at an operat-

ing pro�t. In numerical experiments, we found that non-a�ne solutions to the di�erential

equations typically approached the boundary of the marginal cost conditions. That is, the

marginal costs approach the price for certain prices. At the boundary of these conditions,

the di�erential equations (16) become singular because of the terms in the denominators of

the entries on the right hand side of (16). Nearby to the boundary of the marginal cost con-

ditions, the di�erential equations become di�cult to solve because of numerical conditioning

issues.

The singularity can be removed by augmenting the di�erential equations in a manner

analogous to rearranging the equations into parametric form, as discussed for the symmetric,

two �rm case in [1, x4]. In particular, de�ne a parametric variable u and consider the

di�erential equation: 2
66664

dS

du

dp

du

3
77775 =

1

1 +
Pn

i=1 fi(S; p)

"
f(S; p)

1

#
; (17)
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where the function f : Rn � R ! R
n evaluates the right hand side of (16):

8S 2 R
n ; 8p 2 R; f(S; p) =

�
1

n� 1
11y � I

�
2
6664

S1
p�C0

1
(S1)

...
Sn

p�C0

n(Sn)

3
7775� 

n� 1
1;

and where it is understood that if any of the entries of f approach in�nity then the ratio on

the right hand side of (17) should be evaluated as a limit. The solution of this di�erential

equation yields the relationship of S to p and avoids the singularities of (16). (With a more

careful de�nition of the right hand side of (17), it is also possible to identify u with the

normalized time variable.)

3.5 Marginal cost conditions and feasibility constraints

Even with the transformation described in section 3.4 to circumvent the problem of singular

equations, the solutions to the di�erential equations will often reach and even violate the

marginal cost conditions. We also found that solutions to the di�erential equations typically

failed to satisfy the feasibility constraints. However, preventing the trajectory from violating

the feasibility constraints or the marginal cost conditions poses serious conceptual problems,

which we were not able to solve.

We considered a number of approaches to modifying the di�erential equation to avoid

solutions that were not feasible or did not satisfy the marginal cost conditions. For example,

we considered imposing the feasibility constraints explicitly in the maximization of pro�t

per unit time to obtain a constrained version of the problem of maximizing pro�t per unit

time. This would modify (10) to include a Lagrange multiplier. The basic di�culty in

manipulating the resulting equations into the form of a di�erential equation is that the

dependence of qit on the S 0j; j 6= i is no longer invertible. That is, we can longer write an

equation analogous to (16) with the derivatives of the supply functions given by a function

of the supply functions.

We also tried to model the capacity limit by adding \barrier terms" to the cost function

that rapidly increase as the capacity is reached. However, we were not able to reliably

generate solutions to the di�erential equations that satis�ed the non-decreasing and capacity

constraints.

4 Discussion of assumptions

We discuss some of the assumptions of the model in detail, highlighting three issues that are

critical in the the analysis in section 3:

� consistency of bids across the time horizon,

� continuity of the load-duration characteristic, and

� strictly increasing marginal costs.
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Firm i = 1 2 3

ci(pounds per MWh per MWh) = 0.5 0.5 0.5

ai(pounds per MWh) = 9 9 9

Table 1: Cost and capacity data for three �rm example system based on [9].

Discussion of these issues will help to clarify where the SFE model is appropriate and where

other models, such as Cournot, may be more useful.

In section 3, we already indicated that the marginal cost conditions and the capacity

constraints can provide some di�culty in solving the di�erential equations. To avoid the

issues of marginal cost conditions, price caps, and capacity constraints for the discussion in

this section, we will concentrate on a symmetric uncapacitated three �rm system based on

an example in [9]. We �rst present the example system in section 4.1 and then discuss the

issues in sections 4.2{4.4.

4.1 Three �rm example system

We consider a three �rm electricity market, Based on the example in [9], with each �rm

having the same cost function. The cost and capacity data is shown in table 1. In the

symmetric case, ci is the same for each �rm and ai is the same for each �rm; however, we

have kept the notation consistent with (2).

Following [9], we assume a demand slope of  = 0:125 GW per (pound per MWh) and a

base-case load duration characteristic of:

8t 2 [0; 1]; N(t) = 7 + 20(1� t);

with quantities measured in GW. That is, N varies linearly from 27 to 7 GW.

Green and Newbery [2] exhibit the wide range of symmetric equilibria for this symmetric,

uncapacitated, no price cap case. The range is de�ned by the peak demand function:

8p 2 R+ ; D(p; 0) = N(0)� p:

In particular, suppose that the competitive price p
comp
0 at peak demand is calculated by

solving:

N(0)� p
comp
0 =

nX
i=1

1

ci
(p

comp
0 � ai);

and the corresponding quantities are calculated according to:

8i = 1; : : : ; n; q
comp
i =

1

ci
(p

comp
0 � ai):

The price p
comp
0 and the quantities q

comp
i ; i = 1; : : : ; n are used as a \competitive initial

condition" to solve the di�erential equations (16) backwards from p
comp
0 towards p = p. The

solution S?comp = (S
?comp
i )i=1;:::;n provides one extreme of the range of SFE. We will call

S?comp the \most competitive symmetric SFE."
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Similarly, Cournot prices pCournot0 for the peak demand can be calculated by solving:

N(0)� pCournot0 =
nX

i=1

1

(ci + 1=)
(pCournot0 � ai):

The corresponding quantities are calculated according to:

8i = 1; : : : ; n; qCournoti =
1

(ci + 1=)
(pCournot0 � ai):

The price pCournot0 and the quantities qCournoti ; i = 1; : : : ; n are used as a \Cournot initial

condition" to solve the di�erential equations (16) backwards from pCournot0 towards p = p.

The solution S?Cournot = (S?Cournot
i )i=1;:::;n also satis�es the non-decreasing constraints. The

SFE S?Cournot provides the other extreme of the range of SFE. We will call S?Cournot the

\least competitive symmetric SFE."

At each price p 2 [ai; p
comp
0 ], we have that S?Cournot(p) � S?comp(p) with strict inequality

except at p = ai. The most and least competitive symmetric SFEs de�ne a wide range,

as illustrated in [2, Figure 3]. Figure 2 is based on [2, Figure 3] and shows the most and

least competitive symmetric SFEs for the example system as solid lines. The price pCournot0

is about six times larger than p
comp
0 for this example system.

There is a continuum of equilibria intermediate between the most and least compet-

itive symmetric SFEs. These intermediate symmetric SFEs are speci�ed by intermedi-

ate choices of starting conditions for the di�erential equations (16) that are between the

competitive and Cournot initial conditions. For example, the a�ne SFE S?a�ne is inter-

mediate between the most competitive and least competitive symmetric SFEs. For each

p 2 [ai; p
comp
0 ]; S?Cournot(p) � S?a�ne(p) � S?comp, with strict inequality except at p = aii

(unless there is only one �rm, in which case S?Cournot = S?a�ne.)
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4.2 Consistency of bids across the time horizon

A fundamental assumption of the analysis in section 3 is that each �rm must submit a

single non-decreasing supply function that remains valid throughout the time horizon. The

coupling e�ect throughout the time horizon limits the possible equilibria.

In the absence of a requirement to bid consistently over an extended time horizon, there

is no such limitation on the range of equilibria. At one extreme, �rms could behave as

Cournot oligopolists at each time throughout the time horizon. Cournot prices at each time

can lead to much higher prices on average than in the supply function equilibrium. At the

other extreme, �rms could bid competitively at each time throughout the time horizon. If

there is no obligation to bid consistently over the time horizon, there is a wide range of

possible equilibrium outcomes for each time.

In addition to the equilibrium supply functions, �gure 2 also shows two other supply

functions:

� \competitive," Scomp where the supply functions are the inverses of the marginal cost

functions,

� \Cournot," SCournot where quantities and prices under Cournot competition are cal-

culated for each t 2 [0; 1] and a supply function drawn through the resulting price-

quantity pairs.

For ai < p < p
comp
0 ; S

?comp
i (p) < S

comp
i (p). For ai < p < pCournot0 ; SCournot

i (p) < S?Cournot
i (p).

The functions Scomp and SCournot are shown dashed in �gure 2. For n > 1, SCournot

di�ers from the SFE S?Cournot. It is to be emphasized that SCournot (for n > 1) and Scomp

are not SFEs. (We have ommitted the superscript ? to denote this in the symbols SCournot

and Scomp.) The Cournot supply function SCournot represents an extreme of behavior where

each �rm behaves as a Cournot oligopolist at each time. The competitive supply function

represents the other extreme where each �rm behaves competitively at each time. Green

and Newbery's analysis shows that when �rms must bid a single supply function that applies

throughout the time horizon then the range of possible equilibrium outcomes is limited to

being between S?Cournot and S?comp. As illustrated in �gure 2, this range can be considerably

smaller than the range between SCournot and Scomp.

Some analyses implicitly assume that the supply functions apply over time horizons

that are much longer than the time between updates of bids allowed under pool rules. For

example, [8] models the England and Wales market but the time horizon is considerably

longer than a day. This analysis potentially understates the level of market power available

to bidders that can update their supply functions arbitrarily day by day or even hour by

hour. In the extreme, if �rms can update their bids very often then a Cournot model applied

at each time may be more appropriate.

Even if there is no explicit requirement to bid consistently, implicit regulatory oversight

or the bidders' limited ability to observe the other bidders' supply functions in a timely

manner may limit the rapidity with which bids are updated. That is, even if there is no

explicit market rule there may be some consistency between bids across time and so supply

function equilibrium analysis may be applicable.
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4.3 Continuity of the load-duration characteristic

Even if bid functions are required to be consistent over an extended time horizon, the supply

function equilibrium model may not be suitable. For example, suppose that there is no

uncertainty in demand over the time horizon. Moreover, suppose that demand is represented

by a small number of demand functions, each one applying throughout a period of time in the

time horizon. That is, assume that the load-duration characteristic N is piece-wise constant.

For example, suppose that there were just, say, four periods, say periods a; b; c; d. Such a

piece-wise constant load-duration characteristic is illustrated in �gure 3, taking on the values

Na > Nb > Nc > Nd.

We can imagine such a load-duration characteristic being used in a day-ahead market

with market rules specifying that a clearing price would be calculated for each of the four

periods based on the demand function speci�ed for each period. In this case, a supply

function consisting of steps could be used to achieve the Cournot outcome in each of the four

periods. For example, suppose that the Cournot prices in the four periods were, respectively,

pa > pb > pc > pd and that for �rm i the corresponding Cournot quantities were qia > qib >

qic > qid. Figure 4 shows a bid supply function that will achieve the Cournot prices and

quantities. The dashed curve shows the Cournot supply function SCournot
i . The solid curve

shows a bid function that is constant independent of price in each of four price bands around

the prices pa > pb > pc > pd. In each band the bid supply is equal to the corresponding

Cournot quantities at the prices pa > pb > pc > pd. If each player bids a similar step function

then the Cournot outcomes can be achieved in each of the four periods.

In summary, if the demand is speci�ed by a piece-wise constant load-duration charac-

teristic and there is no uncertainty in supply (that is, there are no \forced outages") then

we can no longer use the Green and Newbery analysis to argue that the equilibria must be

between S?Cournot and S?comp. Given the higher pro�ts available under Cournot behavior,

a Cournot model applied in each period separately may be a better predictor of outcomes
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than a supply function equilibrium model that implicitly assumes a continuous variation

of demand. We have not proved that the type of supply function shown in �gure 4 is an

equilibrium in supply functions for a four period market; however, it is a solution that would

be easy to maintain with implicit collusion.

In typical day-ahead markets there are usually many more than four demand periods,

with 24 or 48 being typical. In this case it may be much more di�cult to robustly achieve

the Cournot outcome in each period because the bands around each Cournot price will be

much smaller. Moreover, uncertainty in each period due to either:

� uncertainty in the demand functions or

� uncertainly in the supply of other �rms due to forced outages" of generation,

would prevent the Cournot outcomes from being an equilibrium. For example, in �gure 5,

there is uncertainty in demand in each of the four demand periods. The uncertainty in each

period would prevent the Cournot outcomes from being an equilibrium.

If the demand uncertainty in each period is large enough then the distribution of demand

for successive periods can overlap. Similarly, if the uncertainty in the supply of other �rms in

each period is large enough then the residual demand faced by a �rm for successive periods

can overlap. With large enough uncertainty in each period, the residual demand faced by

a �rm would be distributed continuously, even though the market is cleared with a single

price applying throughout each period. In this case, the supply function equilibrium is the

appropriate equilibrium model.

4.4 Strictly increasing marginal cost functions

In [15], von der Fehr and Harbord argue that \the equilibria found by Green and Newbery

(1991) in their model do not generalise to the case in which individual generating sets are of
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positive size." That is, if the cost functions reect economic dispatch of a portfolio of units

having �nite size, then the Green and Newbery analysis is not applicable. The argument of

von der Fehr and Harbord rests on their proposition 1 [15, pp533{534]. However, transcribed

into our notation, their proposition assumes that:

ai 6= aj; 1 � i 6= j � n; i (18)

ci = 0; 8i; (19)

and assumes that all generation by any given generating unit must be o�ered at a single

price. That is, von der Fehr and Harbor's argument rests on the assumptions that each

�rm has constant marginal cost across its full range of production, that each �rm's marginal

cost is di�erent from all other �rms' marginal costs, and that each individual generating

unit must o�er all of its capacity at a single price. As discussed in the introduction, the

assumption of constant marginal costs is not realistic for a �rm that owns a portfolio of

generation. While it is true that typical market rules limit the number of \blocks" that

can be bid for a given generating unit, there is nevertheless considerable exibility to o�er

generation capacity in several blocks having di�erent prices. Moreover, the size of the blocks

can usually be modi�ed at will. In summary, von der Fehr and Harbord's criticism of the

SFE framework rests on unrealistic assumptions that marginal costs are constant across

portfolios, that each portfolio has a di�erent marginal cost, and that �xed block sizes must

be bid.

If we assume that (18){(19) hold then there is no a�ne SFE solution. To see this, consider

an a�ne function of the form:

8i; 8p 2 P; S?a�ne
i (p) = �ip� �i:

We substitute into (12) to obtain,

8i; 8p 2 P; �ip� �i = (p� ai)( +
X
j 6=i

�j):
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Since this expression is identically true for all realized prices in the set P, we can equate like

coe�cients of powers of p. Equating the coe�cient of p yields (15) for the particular case

ci = 0 for each �rm. We obtain:

8i; �i =
X
j 6=i

�j + :

Summing this expression over all �rms, yields:

nX
i=1

�i =
nX

i=1

X
j 6=i

�j + n;

= (n� 1)
nX

i=1

�i + n:

Rearranging, we obtain:

(n� 2)
nX

i=1

�i + n = 0;

which has no solution for n � 2 in non-negative values of �i and .

This result is not surprising since an a�ne supply function cannot capture the pro�t

maximizing response, given constant marginal costs, of providing as much production as

possible when prices are above marginal cost. However, a slight extension of this argument

to the more general continuous but nonlinear SFE case shows that the only SFE that can

exist in this situation are solutions that are signi�cantly more competitive than the a�ne

SFE. In summary, when (18){(19) hold, the range of possible continuous SFEs is severely

restricted. (We have not investigated the possible equilibria when discontinuous supply

functions can be bid.)

5 Stability of equilibria

In this section, we discuss the stability of equilibria and present conditions for an SFE to be

unstable. In practice, an unstable equilibrium is unlikely to be observed. Consequently, we

restrict attention to stable equilibria. In [10], Anderson and Xu present conditions for an

equilibrium in a similar market structure to be stable. We have not adapted the Anderson

and Xu analysis.

To introduce the relevance of stability, recall the symmetric, uncapacitated, no price cap

case discussed in section 4.1. As discussed in section 4.1, the range between the symmetric

most competitive and symmetric least competitive SFEs can be very wide. We will show,

however, that all of the SFEs between the a�ne SFE S?a�ne and the least competitive

symmetric SFE S?Cournot are unstable. Consequently, only the SFEs between the most

competitive symmetric SFE S?comp and the a�ne SFE S?a�ne will be exhibited in practice.

This signi�cantly limits the range of equilibria that can occur in practice.

In section 5.1, we develop the theorem characterizing stability in the context of an SFE

where the cost functions are not necessarily symmetric. In section 5.2, we discuss the im-

plications. The theorem as stated applies only to SFEs that are obtained as non-decreasing

solutions to the di�erential equations (16). The reason for this restriction is due to the tech-

nical di�culty of characterizing optimal responses when the pro�t function for a player is
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non-concave. However, we hypothesize that the theorem holds in much more generality than

we have stated it. In particular, the numerical results in sections 9 and 11 are essentially

consistent with the conclusion of the theorem.

5.1 Analysis

In this section we �rst de�ne some particular sets of functions, prove some technical lemmas

and then use them in the main theorem. The basic approach involves considering a supply

function equilibrium S? = (S?
i )i=1;:::;n that is a non-decreasing solution of (16). We then

de�ne a perturbation S�
i ; i = 1; : : : ; n of S?

i ; i = 1; : : : ; n. In the case that the SFE S?

is less competitive than the a�ne SFE, the perturbed functions S�
i involve \bending" the

SFE functions S?
i to be slightly more competitive. We then �nd that the optimal response

by �rm i to S�
j ; j 6= i involves an even larger bend. Similarly, in the case that the SFE

is more competitive than the a�ne SFE, the perturbed functions are bent to be slightly

less competitive. The optimal response is again an even larger bend. In summary, a small

perturbation to the equilibrium results in a response with a larger perturbation so that

equilibrium is not stable.

It is relatively easy to construct an optimal response by �rm i to S�
j ; j 6= i that deviates

more from S?
i than does S�

i . However, there is a continuum of such optimal responses. Most

of the technical e�ort in the the proofs involves showing that every optimal response by �rm

i to S�
j ; j 6= i deviates more from S?

i than does S�
i .

We begin with:

De�nition 3 Suppose that demand is of the form (1). Consider bid supply functions Si 2 Si

de�ned on an interval of prices P = [p; p]. Suppose that supply and demand intersect at the

peak demand time t = 0 at a price p0 2 P. We call p0 the \peak realized price for the bids

Si; i = 1; : : : ; n." Suppose that supply and demand intersect at the minimum demand time

t = 1 at a price p1 2 P. We call p1 the \minimum realized price for the bids Si; i = 1; : : : ; n."

2

In the symmetric case, if the players bid the least competitive symmetric equilibrium S?Cournot

then the peak realized price is pCournot0 . If the players bid the most competitive symmetric

equilibrium S?comp then the peak realized price is p
comp
0 .

De�nition 4 Suppose that demand is of the form (1) and that �rm i has marginal costs C 0
i

for i = 1; : : : ; n. Consider a solution S?
i : P! R; i = 1; : : : ; n of the di�erential equation (16)

on an interval of prices P = [p; p]. Suppose that the S?
i are non-decreasing and that the peak

realized price for the bids S?
i ; i = 1; : : : ; n is p?0. By de�nition of the di�erential equation,

the S?
i are continuously di�erentiable.

Let p < p� < p?0 and de�ne S� : [p; p]! R
n by:

8i = 1; : : : ; n; 8p 2 [p; p]; S�
i (p) =

(
S?
i (p); if p � p < p�,

S?
i (p

�) + ��
i (p� p�); if p� � p � p,

where ��
i = S?0

i (p
�); i = 1; : : : ; n. For each �rm i, S�

i (p) equals S
?
i (p) for prices p between p

and p�. For prices p greater than or equal to p�, the slope of S�
i (p) is constant at �

�
i = S?0

i (p
�).

By de�nition, S�
i is continuously di�erentiable, since S?

i is continuously di�erentiable.
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Figure 6: Illustration of def-

inition 4.

We call S�
i the \linear continuation of S?

i from price p�." We call S�
i (p

?
0) the \maximum

relevant supply of the linear continuation of S?
i ." 2

De�nition 4 is illustrated in �gure 6 for a supply function that is concave. The two solid

curves depict the functions:

� S?
i and

� the residual demand faced by �rm i at peak, D(0; �)�
P

j 6=i S
?
j (�).

These functions intersect at the point (p?0; S
?
i (p

?
0)), which is shown as the leftmost of the pair

of bullets, �, near the top of the �gure. The point (p�; S?
i (p

�)) is illustrated as the bullet that

is towards the bottom of the �gure. The dashed curve shows the function S�
i in the interval

[p�; p?0], with the point (p?0; S
�
i (p

?
0)) shown as the rightmost of the pair of bullets near the top

of the �gure.

The supply functions in �gure 6 and in all subsequent �gures are shown with price p

on the vertical axis and the values of production Si on the horizontal axis. In lemma 4

and subsequently, we will consider supply functions Si that are strictly concave or strictly

convex. Despite the pictorial representation of price versus quantity, when we specify that

Si is concave, for example, we mean that the function Si is concave as a function of p.

De�nition 5 Suppose that demand is of the form (1) and that �rm i has marginal costs C 0
i

for i = 1; : : : ; n. Consider a solution S?
i : P! R; i = 1; : : : ; n of the di�erential equation (16)

on an interval of prices P = [p; p]. Suppose that the S?
i are non-decreasing and that the peak

realized price for the bids S?
i ; i = 1; : : : ; n is p?0.

Let p < p� < p?0 and let S�
i be the linear continuation of S?

i from price p�. Suppose that

�rm i faces supply S�
j ; j 6= i. In the following lemma, we will consider one particular pro�t

maximizing feasible and allowable response by �rm i to the functions S�
j ; j 6= i. In general
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there can be a multiplicity of optimal responses by player i. We will construct one such

functions and write Ŝi 2 Si for it. We call Ŝi(p
?
0) the \maximum relevant supply of the �rm

i optimal response to S�
j ; j 6= i." 2

Lemma 1 Suppose that demand is of the form (1) and that each �rm i = 1; : : : ; n has a�ne

marginal costs C 0
i of the form (2) and that the capacity of each �rm is arbitrarily large.

Consider a solution S?
i : P ! R; i = 1; : : : ; n of the di�erential equation (16) on an interval

of prices P = [p; p]. Suppose that the S?
i are non-decreasing so that S?

i 2 Si; i = 1; : : : ; n and

that the peak realized price for the bids S?
i ; i = 1; : : : ; n is p?0.

Let ai < p� < p?0 and let S�
i be the linear continuation of S?

i from price p�. We claim that

the following function Ŝi is an optimal response to S�
j ; j 6= i:

8p 2 [p; p]; Ŝi(p) =

(
S?
i (p); if p � p < p�,

S?
i (p

�) + �̂i(p� p�); if p� � p � p,
(20)

where:

8i = 1; : : : ; n; �̂i =

P
j 6=i �

�
j + 

1 + ci(
P

j 6=i �
�
j + )

: (21)

Proof As in the derivation of the equilibrium conditions in section 3.1, we �rst neglect the

non-decreasing constraints and consider, for each p, the optimal response of �rm i to the bids

of the other �rms. We then check that the function as de�ned satis�es the non-decreasing

constraints.

We consider the two (just overlapping) intervals of prices p � p � p� and p� � p �

p?0 separately. For prices p � p � p�, we claim that the quantity Ŝi(p) = S?
i (p) is the

unique globally optimal response at price p to Ŝj(p); j 6= p. This is true by de�nition of the

di�erential equation (16) because in this range of prices we have that S�0
j = S?0

j ; j 6= i. This

veri�es the �rst line of the right hand side of (20) and, in addition, shows that Ŝi(p
�) = S?

i (p
�).

We will use this last fact to help evaluate terms in the optimal response for prices p� � p � p?0.

The function Ŝi is continuous at p
� because of the continuity of the derivatives of S�

j at p
�.

For prices p� � p � p?0, the optimality condition (10) states that:

Ŝi(p) = (p� ai � ciŜi(p))

0
@ +X

j 6=i

��
j

1
A :

Rearranging this yields the unique globally optimal response at price p of:

Ŝi(p) = �̂i(p� ai);

where �̂i is as de�ned in (21). Substituting in the price p = p�, we obtain:

Ŝi(p
�) = S?

i (p
�) = �̂i(p

�
� ai); (22)

so that:

8p 2 [p�; p]; Ŝi(p) = �̂i(p� ai);

= �̂i(p
�
� ai) + �̂i(p� p�);

= S?
i (p

�) + �̂i(p� p�);
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Figure 7: Illustration of

lemma 1.

by (22). This veri�es the second line of the right hand side of (20).

Now we must check that Ŝi, as de�ned, satis�es the non-decreasing constraints. By

de�nition, Ŝi satis�es the non-decreasing constraints for p � p < p�. Moreover, Ŝi satis�es

the non-decreasing for p� � p � p because �̂i � 0 since it is the ratio of two positive numbers

because  � 0 and ��
i � 0. Since Ŝi is continuous it therefore satis�es the non-decreasing

constraints for p � p � p.

2

Lemma 1 is illustrated in �gure 7 for supply functions that are concave. (The price axis

is scaled di�erently to �gure 6.) As previously, the function S?
i is shown solid. The function

S�
i is shown dashed on the interval [p�; p?0] and the function Ŝi is shown dotted on the same

interval. The points (p?0; S
?
i (p

?
0)) and (p�; S?

i (p
�)) are shown as bullets. Although S? is an

equilibrium, neither S� = (S�
i )i=1;:::;n nor (Ŝi)i=1;:::;n are equilibria. However, for each i, Ŝi is

an optimal response to S�
j ; j 6= i.

De�nition 6 Suppose that the assumptions of lemma 1 hold. Suppose that �rm i bids the

function Ŝi while the other �rms bid the functions S�
j ; j 6= i. We write p̂0i for the peak

realized price for these bids and we write p̂1i for the minimum realized price for these bids.

We call Ŝi(p̂0i) the \peak realized supply given �rm i optimal response to S�
j ; j 6= i." 2

Lemma 2 Suppose that the assumptions of lemma 1 hold. Then the set of all optimal

response functions for �rm i to S�
j ; j 6= i is the set of all feasible non-decreasing functions on

[p; p] that match the function Ŝi on the interval [p̂1i; p̂0i], where Ŝi was de�ned in lemma 1.

Proof Lemma 1 exhibits one possible optimal response by �rm i to the bids S�
j ; j 6= i,

namely Ŝi. For each price in the interval [p̂1i; p̂0i], the value of Ŝi(p) de�ned in lemma 1

is the unique globally optimal response at that price. That is, for prices in the interval
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[p̂1i; p̂0i], the values of the optimal response for �rm i are uniquely determined. However, for

prices lower than p̂1i or higher than p̂0i, the value of Ŝi is irrelevant because prices outside

the interval [p̂1i; p̂0i] are not realized. Any non-decreasing function that matches Ŝi on the

interval [p̂1i; p̂0i] will also be an optimal response to S�
j ; j 6= i so long as the function does

not violate the capacity constraints. 2

We will be interested in considering an element Ŝi of the set of optimal responses to

S�
j ; j 6= i whose maximum value is minimized. This element Ŝi will be the closest optimal

response to S?
i in the sense of a norm to be de�ned later. One such function Ŝi is de�ned

by:

8p 2 [p; p]; Ŝi(p) = minfŜi(p); Ŝi(p̂0i)g; (23)

which matches Ŝi on the interval [p; p̂0i] but has constant value Ŝi(p̂0i) for prices in the

interval [p̂0i; p].

In the following lemma, we consider the the variation of certain quantities with p� as it

decreases from p?0.

Lemma 3 Suppose that the assumptions of lemma 1 hold. Consider the following expres-

sions:

� S�
i (p

?
0), the maximum relevant supply of the linear continuation of S?

i ,

� Ŝi(p
?
0), the maximum relevant supply of the �rm i optimal response to S�

j ; j 6= i.

� p̂0i, the peak realized price given �rm i optimal response to S�
j ; j 6= i, and

� Ŝi(p̂0i) the peak realized supply given �rm i optimal response to S�
j ; j 6= i.

In each case, we view the expression as an implicit function of p� and consider the derivative

of it with respect to p�, evaluated at p?0. (Since some of the functions are not de�ned uniquely

for prices greater than p?0, strictly speaking we will evaluate the derivative only for movements

in the direction of decreasing p�.) The derivatives of these expressions with respect to p�

evaluated at p� = p?0 are, respectively, equal to:

� 0,

� �?
i � �̂i,

� �
�?
i � �̂iP

j 6=i �
?
i + �̂i + 

, and

�
(�?

i � �̂i)(
P

j 6=i �
?
i + )P

j 6=i �
?
i + �̂i + 

,

where:

8i = 1; : : : ; n; �?
i = S?0

i (p
?
0):
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Proof For the �rst item, note that:

S�
i (p

?
0) = S?

i (p
�) + S?0

i (p
�)(p?0 � p�):

Totally di�erentiating with respect to p� yields:

d[S�
i (p

?
0)]

dp�
(p�) = S?0

i (p
�) + S?00

i (p�)(p?0 � p�)� S?0
i (p

�);

= S?00
i (p�)(p?0 � p�);

where the double superscript 0 indicates the second derivative. Evaluating this expression at

p� = p?0 yields zero.

For the second item, note that:

Ŝi(p
?
0) = S?

i (p
�) + �̂i(p

?
0 � p�):

Di�erentiating with respect to p� yields:

d[Ŝi(p
?
0)]

dp�
(p�) = S?0

i (p
�) +

d�̂i
dp�

(p�0)(p
?
0 � p�)� �̂i:

Evaluating this expression at p� = p?0 yields �
?
i � �̂i

The third item involves the price that results at peak demand from bids. The price

is implicitly determined by the solution of (5). We use the implicit function theorem to

show that the price p̂0i is a well-de�ned function of p� for p� in a neighborhood of p?0 and to

calculate the derivative.

At the peak demand and given that �rm i bids Ŝi while the other �rms bid the functions

S�
j ; j 6= i, equation (5) becomes, after rearranging:

p̂0i +
X
j 6=i

S�
j(p̂0i) + Ŝi(p̂0i)�N(0) = 0:

For p� = p?0, the solution to this equation is p̂0i = p?0. Applying the implicit function theorem

we obtain that p̂0i is a well-de�ned and di�erentiable function of p� within a neighborhood

of p?0. In particular,

dp̂0i
dp�

(p?0) = �
�?
i � �̂iP

j 6=i �
?
i + �̂i + 

:

For the last item, note that:

Ŝi(p̂0i) = S?
i (p

�) + �̂i(p̂0i � p�);

so that
d[Ŝi(p̂0i)]

dp�
(p�) = S?0

i (p
�) +

d�̂i
dp�

(p�)(p̂0i � p�) + �̂i

 
dp̂0i
dp�

(p�)� 1

!
:
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Evaluating this at p� = p?0 yields:

d[Ŝi(p̂0i)]

dp�
(p?0) = �?

i + �̂i

 
�

�?
i � �̂iP

j 6=i �
?
i + �̂i + 

� 1

!
;

=
(�?

i � �̂i)(
P

j 6=i �
?
i + )P

j 6=i �
?
i + �̂i + 

;

on rearranging. 2

Lemma 4 Suppose that the assumptions of lemma 1 hold. If, for each �rm i, S?
i ; i = 1; : : : ; n

is strictly concave on the interval [ai; p
?
0] then for each i, �̂i > ��

i . If, for each �rm i,

S?
i ; i = 1; : : : ; n is strictly convex on the interval [ai; p

?
0] then for each i, �̂i < ��

i .

Proof We �rst consider the case where each supply function is strictly concave. Consider

the linear function de�ned for each p by:

S?
i (p

�) + �̂i(p� p�): (24)

This function matches the function Ŝi de�ned in lemma 1 for prices in the interval [p�; p]. It

intersects the function S?
i at the point (p�; S?

i (p
�)). In the proof of lemma 1, it was shown

that the function de�ned in (24) is the same as the function de�ned for each p by:

�̂i(p� ai):

We note that for p = ai, we have that �̂i(ai�ai) = 0. Also, by de�nition of (16), S?
i (ai) = 0.

That is, the function (24) also intersects the function S?
i at the point (ai; 0). In summary,

the function (24) has slope �̂i and intersects the increasing, strictly concave function S?
i at

two points, namely p = ai and p = p�, with ai < p�. Therefore, �̂i > S?0
i (p

�) = ��
i .

The argument in the case of each supply function being strictly convex is similar. 2

Lemma 4 shows that the relative slopes of the functions S�
i and Ŝi are as depicted in

�gure 7 for concave S?
i .

Corollary 5 Suppose that the assumptions of lemma 1 hold. First, suppose that for each

�rm i, S?
i ; i = 1; : : : ; n is strictly concave on the interval [ai; p

?
0]. Then the derivatives of the

�rst and fourth quantities considered in lemma 3 are, respectively, zero and negative. As p�

decreases from p?0, the fourth quantity becomes strictly greater than the �rst quantity.

On the other hand, suppose that for each �rm the supply functions are strictly convex

on the interval [ai; p
?
0]. Then the derivatives of the �rst and fourth quantities considered in

lemma 3 are, respectively, zero and positive. As p� decreases from p?0, the fourth quantity

becomes strictly less than the �rst quantity.

Proof Note that for p� = p?0; S
�
i (p

?
0) = Ŝi(p

?
0).

2

Finally, we de�ne the notion of unstable equilibrium and characterize conditions for an

unstable equilibrium:
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De�nition 7 Let S = X
n

i=1
Si and suppose that S?

2 S is an SFE. Let k�k be a norm

on equivalence classes of elements of S such that if S 2 S and kS � S?
k = 0 then the price

function de�ned by (6) resulting from the supply functions S is the same as the price function

resulting from supply functions S?. Then we say that S? is an unstable equilibrium if for

every � > 0 there exists S� = (S�
i )i=1;:::;n 2 S such that:

� kS�
� S?

k < � and

� if, for each i, ~Si is any optimal response to S�
j ; j 6= i and we de�ne ~S = ( ~Si)i=1;:::;n then ~S � S?

 > kS�
� S?

k.

2

That is, S? is unstable if a small perturbation S� to S? results in responses ~S by the �rms

that deviate even more from S?. \Small perturbation" is de�ned by a norm on equivalence

classes of elements of S that distinguishes the resulting price functions. The de�nition is

\local in the sense that it does not require that the best response to ~S be even further from

S? than ~S.

Theorem 6 Suppose that the assumptions of lemma 1 hold. Moreover, suppose that either:

� for each �rm i, S?
i ; i = 1; : : : ; n is strictly concave on the interval [ai; p

?
0] and that the

capacity constraints are not binding at the price p?0 or

� for each �rm i, S?
i ; i = 1; : : : ; n is strictly convex on the interval [ai; p

?
0].

The the SFE S?
is unstable.

Proof We �rst consider the case where each supply function Is strictly concave and ca-

pacity constraints are not binding. Let S = X
n

i=1
Si. We de�ne a norm on the equivalence

classes of functions in S that are identical up to the price p?0. In particular, de�ne k�k by:

8S 2 S; kSk = max
i=1;:::;n

Z p?
0

p
jSi(p)j dp:

We show that an arbitrarily small perturbation (in the sense of the norm k�k) to the

SFE S? will result in a response by the �rms that deviates even more from S?. This will

show that the equilibrium is unstable.

Let � > 0 be given. By continuity of S? and S?0 in the neighborhood of p?0, let ai < p� < p?0
be large enough such that:

� kS�
� S?

k < �, where S� = (S�
i )i=1;:::;n,

� By corollary 5, for each i = 1; : : : ; n, Ŝi(p̂0i) > S�
i (p

?
0), where:

{ the quantity S�
i (p

?
0) is the maximum relevant supply of the linear continuation of

S?
i and

30



{ the quantity Ŝi(p̂0i) is the peak realized supply given �rm i optimal response to

S�
j ; j 6= i.

� for each �rm Ŝi(p̂0i) < qi.

The function S� represents a perturbation from S?. By lemma 2, the optimal response

of �rm i to S�
j ; j 6= i is any non-decreasing function that matches the function Ŝi on the

interval [p̂1i; p̂0i]. We show that the functions Ŝ = (Ŝi)i=1;:::;n de�ned in (23) are the optimal

responses that are closest to S? in the sense of the norm k�k. Moreover, we show that:Ŝ � S?
 > kS�

� S?
k.

Because of the concavity of the S?
i and by lemma 4, Ŝ � S�

� S?. Consequently, by the

discussion after lemma 2, out of the set of optimal responses by �rm i to the bids S�
j ; j 6= i,

the function that is closest to S? in the sense of the norm k�k is the function Ŝi de�ned

in (23). We have that:

8i = 1; : : : ; n; 8p 2 [p�; p̂0i]; Ŝi(p) = Ŝi(p);

� S�
i (p); by lemma 4,

� S?
i (p); by concavity of S?,

8i = 1; : : : ; n; 8p 2 [p̂0i; p
?
0]; Ŝi(p) = Ŝi(p̂0i); by (23),

= Ŝi(p̂0i); by (23),

> S�
i (p

?
0); by construction,

� S�
i (p); since S

�
i is non-decreasing,

� S?
i (p):

Also:

8i = 1; : : : ; n; 8p 2 [p; p�]; S�
i (p) = S?

i (p):

Consequently, by de�nition of the norm,
Ŝ � S?

 > kS�
� S?

k. Moreover, every vector ~S of

optimal responses to S� satis�es:
 ~S � S?

 � Ŝ � S?
 > kS�

� S?
k and so the equilibrium

S? is unstable.

In the case of strictly convex Si, p̂0i > p?0 and the optimal response to S� is Ŝ throughout

the interval [p; p?0]. 2

Lemma 7 Consider a solution S?
of (16) for demand of the form (1) and a�ne marginal

costs of the form (2). Then:

S?00(p) =

�
1

n� 1
11y � I

�
2
6664

S?0
1
(p)(p�ai)�S

?
1
(p)

(p�C0

1
(S?

1
(p)))2

...

S?0n (p)(p�an)�S
?
n(p)

(p�C0

n(S
?
n(p)))

2

3
7775 : (25)

Proof Di�erentiate (16). 2

Corollary 8 Consider any symmetric non-decreasing solution S?
of (16) for demand of the

form (1) and a�ne marginal costs of the form (2) where the marginal costs are the same for

each �rm. Suppose that either:
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� the solution satis�es S? < S?a�ne
and the capacity constraints are strictly satis�ed at

all prices up to the peak realized price p?0 or

� the solution satis�es S? > S?a�ne
.

Then S?
is unstable.

Proof If the solution satis�es S? < S?a�ne then the terms in the denominator of the right

hand side of (25) are all negative so that 8i = 1; : : : ; n; 8p 2 [ai; p
?
0]; S

?00
i (p) < 0 and so the

supply functions are strictly concave. Furthermore, by assumption the capacity constraints

are strictly satis�ed.

If the solution satis�es S? > S?a�ne then the terms in the denominator of the right hand

side of (25) are all positive so that 8i = 1; : : : ; n; 8p 2 [ai; p
?
0]; S

?00
i (p) > 0 and so the supply

functions are strictly convex. In either case, the SFE is not stable. 2

5.2 Discussion

Corollary 8 shows that in the symmetric case every SFE between S?Cournot and S?a�ne (in-

cluding S?Cournot but not including S?a�ne) is unstable unless capacity constraints are just

binding at the peak realized price. The corollary also shows that in the symmetric case ev-

ery SFE between S?a�ne and S?comp (including S?comp but not including S?a�ne) is unstable.

Baldick and Kahn show that, under mild conditions, if the bid functions are required to

be a�ne, then the a�ne SFE S?a�ne is stable in the function space of a�ne SFEs [8]. We

hypothesize the stronger result that, with respect to a suitable norm on S, the a�ne SFE

is stable in S. Although there is a wide range of equilibria in the symmetric unconstrained

case, this wide range is unlikely to be observed in practice because the equilibria that are

di�erent to S?a�ne are unstable.

The situation is illustrated in �gure 8 for the three �rm example system discussed in

section 4.1. Green and Newbery's analysis [2] suggests that any equilibrium between the least

competitive symmetric SFE S?Cournot and the most competitive symmetric SFE S?comp can

be observed. These supply functions are both shown solid in �gure 8. However, corollary 8

shows that only the a�ne SFE S?a�ne (shown dashed in �gure 8) can be stable. Only stable

equilibria are likely to be observed in practice.

Green and Newbery [2] use the least competitive SFE S?Cournot for some of their analysis

to estimate an upper bound on price mark-ups in the England and Wales system. Their

calculations yield price mark-ups that are much higher than were observed. Corollary 8

suggests that S?Cournot is not a tight bound on the equilibrium mark-ups.

We can also consider applying the previous analysis to SFEs that are not obtained as

solutions to the di�erential equation and where the pro�t function is non-concave. In this

case we can only guarantee that the response Ŝi that we construct to the bids S�
j ; j 6= i is a

local but not necessarily globally optimal response. Nevertheless, even in the case that the

pro�t function is non-concave, if the functions S?
i are all concave or all convex then a similar

construction can still be used to �nd a function Ŝi that is a better response than S�
i to the

bids S�
j ; j 6= i. However, we cannot in general show that Ŝi is the best response to the bids

S�
j ; j 6= i. This suggests, however, that if:
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corollary 8.

� the non-decreasing constraints are binding on an SFE,

� supply functions are all strictly concave or all strictly convex in the vicinity of the

maximum realized price, and

� the capacity constraints are not binding (in the case of strictly convex supply functions),

then the equilibrium will be unstable. Moreover, if a local improvement algorithm is used

by �rms to respond to the supplies of other �rms then such equilibria will not be observed

in practice. Conversely, we expect that, in the vicinity of the peak price, stable equilibria

will not involve all strictly concave supply functions unless capacity constraints are binding

and will not involve all strictly convex supply functions.

The construction of bending the supply function also fails if the capacity constraints are

binding. Supply functions satisfying the di�erential equation (16) that are less competitive

than S?a�ne can be stable only if the capacity constraints are just binding at the peak real-

ized price. For example, Day and Bunn [9] use their numerical technique on the symmetric

three �rm case upon which our example is based and exhibit results that are consistent with

the least competitive equilibrium S?Cournot. They apparently choose the capacity constraints

to be exactly equal to the Cournot supply at the peak demand. That is, they are implic-

itly considering a capacitated case where the capacity constraints are just binding at the

peak realized price. The least competitive symmetric equilibrium S?Cournot is stable in that

constrained case.

Finally, we observe that the stability results may not apply perfectly to equilibria calcu-

lated using the numerical framework that we will develop in section 8. This is because the

proofs of equilibria being unstable rely on the construction of arbitrary di�erentiable func-

tions. In the numerical framework we develop, we will use a �nite dimensional parametriza-

tion of the supply functions. We have not investigated theoretically the conditions for an
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unstable equilibrium in this context, but speculate that the results would be less \clear cut"

than the results we have developed here.

6 Allowable functions

Klemperer and Meyer [1] and Green and Newbery [2] show that if the cost functions are the

same for each �rm and if a non-a�ne symmetric solution is obtained for the di�erential equa-

tion (16) then for su�ciently high prices the solution will either violate the non-decreasing

constraints (in the case of solutions that are less competitive than the a�ne SFE) or become

vertical. However, so long as the realized prices do not exceed the price at which the solu-

tions become decreasing or vertical then the solution of the di�erential equation provides an

SFE.

In this section we will observe that it is generally very di�cult to �nd solutions of (16)

that are non-decreasing over all realized prices except in very special cases, namely:

� if the cost functions are the same for each �rm, as explored by Klemperer and Meyer [1]

and Green and Newbery [2],

� if the marginal costs are a�ne and there are no capacity constraints so that there are

linear or a�ne solutions to (16), which was explored in [3, 6, 8], or

� if the load factor over the time horizon is very close to 100%.

In the general case, of �rms having capacity constraints and asymmetric costs, solutions

of (16) typically violate the non-decreasing requirements somewhere over the range of realized

prices over the time horizon. The following theorem helps to explain why this is the case. It

shows that the solutions of the di�erential equation must satisfy tight bounds in order for

the solution to be non-decreasing over a range of prices. The theorem partially generalizes

analysis in Klemperer and Meyer developed for the symmetric case [1, Proposition 1].

6.1 Analysis

Theorem 9 Consider a solution S?
i : P ! R; i = 1; : : : ; n of the di�erential equation (16)

on an interval of prices P = [p; p]. If each function S?
i ; i = 1; : : : ; n is non-decreasing on P

then:

8i = 1; : : : ; n; 8p 2 P;  �
S?
i (p)

p� C 0
i(S

?
i (p))

�

�
1

n� 1

� nX
j=1

(
S?
j (p)

p� C 0
j(S

?
j (p))

)
�



n� 1
: (26)

Proof We �rst prove the lower bound condition in (26). That is, we prove:

8i = 1; : : : ; n; 8p 2 P;  �
S?
i (p)

p� C 0
i(S

?
i (p))

:
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The di�erential equation (16) collects together and rearranges the conditions (12) applied to

each �rm. Rearranging (12), we obtain:

S?
i (p)

p� C 0
i(S

?
i (p))

=  +
X
j 6=i

S 0j(p);

� ;

since S 0j(p) � 0; 8j by assumption.

We now prove the upper bound condition in (26). That is, we prove:

8i = 1; : : : ; n; 8p 2 P;
S?
i (p)

p� C 0
i(S

?
i (p))

�

�
1

n� 1

� nX
j=1

(
S?
j (p)

p� C 0
j(S

?
j (p))

)
�



n� 1
:

Let 1i be the vector of all zeros, except in the i-th place where it is equal to 1. For any

p 2 P,

0 � S?0
i (p);

= [1i]
y
S?0(p);

=
1

n� 1
1y

2
6664

S?
1
(p)

p�C0

1
(S?

1
(p))

...
S?n(p)

p�C0

n(S
?
n(p))

3
7775� S?

i (p)

p� C 0
i(S

?
i (p))

�


n� 1
; by (16),

=

�
1

n� 1

� nX
j=1

S?
j (p)

p� C 0
j(S

?
j (p))

�
S?
i (p)

p� C 0
i(S

?
i (p))

�


n� 1
:

Rearranging we obtain:

S?
i (p)

p� C 0
i(S

?
i (p))

�

�
1

n� 1

� nX
j=1

(
S?
j (p)

p� C 0
j(S

?
j (p))

)
�



n� 1
:

2

6.2 Discussion

In theorem 9, the lower bound condition in (26) requires that  be no larger than the smallest

entry of the vector: 2
6664

S?
1
(p)

p�C0

1
(S?

1
(p))

...
S?n(p)

p�C0

n(S
?
n(p))

3
7775 : (27)

Furthermore, the expression:

�
1

n� 1

� nX
j=1

(
S?
j (p)

p� C 0
j(S

?
j (p))

)
;

is equal to n

n�1
times the average of the entries in the vector (27). The upper bound condition

in (26) in theorem 9 requires that each entry of the vector (27) is smaller than
�

n

n�1

�
times
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the average of the entries. For n large, the ratio
�

n
n�1

�
is only slightly greater than one.

That is, the upper bound condition in theorem 9 dictates that the values of
S?
j
(p)

p�C0

j
(S?

j
(p))

must

fall in a narrow range in order for the solution to the di�erential equation be non-decreasing.

In the cases of:

1. symmetric cost functions and symmetric solutions to the di�erential equations or

2. a�ne solutions to the di�erential equations with a�ne marginal costs,

then the necessary conditions in theorem 9 are relatively mild as we will discuss in the

following two sections. We will then discuss capacity constraints.

6.2.1 Symmetric cost functions

If the cost functions and the solutions to the di�erential equation are symmetric then the

upper bound condition in (26) can be veri�ed as follows:

S?
i (p)

p� C 0
i(S

?
i (p))

=

�
n� 1

n� 1

�
S?
i (p)

p� C 0
i(S

?
i (p))

=

�
1

n� 1

�X
j

S?
j (p)

p� C 0
j(S

?
j (p))

�
1

n� 1

S?
i (p)

p� C 0
i(S

?
i (p))

;

since the cost functions and solutions are symmetric,

�

�
1

n� 1

�X
j

(
S?
j (p)

p� C 0
j(S

?
j (p))

)
�

�


n� 1

�
;

where the inequality is true if the lower bound condition in (26) in theorem 9 is satis�ed.

That is, the upper bound condition on
S?
i
(p)

p�C0

i
(S?

i
(p))

is automatically satis�ed if the lower

bound condition is satis�ed. This means that the non-decreasing constraints are easier to

satisfy in the symmetric case than in the asymmetric case. In fact, as Klemperer and Meyer

show [1, Proposition 1], a necessary and su�cient condition for a symmetric solution of the

di�erential equations to be an SFE is that the lower bound condition in (26) be satis�ed.

In the symmetric case, the equilibrium supply functions S?Cournot and S?comp satisfy the

non-decreasing constraints over the range of realized prices. Moreover every symmetric

equilibrium between these equilibria also satis�es the non-decreasing constraints.

6.2.2 A�ne solutions for a�ne marginal cost functions

The a�ne SFE S?a�ne was exhibited in (14). Each function S?a�ne
i has slope �i 2 R+

satisfying (15). Since the �i 2 R+ , the a�ne functions are guaranteed to be non-decreasing.

6.2.3 Capacity constraints

To interpret theorem 9 in the case of capacity constraints (3), we will assume that the

marginal costs e�ectively increase very rapidly as capacity constraints are approached. This
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Firm i = 1 2 3 4 5

ci(pounds per MWh per MWh) = 2.687 4.615 1.789 1.93 4.615

ai(pounds per MWh) = 12 12 8 8 12

Table 2: Cost data based on �ve �rm industry described in [8].

means that entries in the vector (27) change rapidly with p as capacity constraints are

approached so that the upper bound condition will not be satis�ed unless all �rms reach

their capacity at the same price. We conjecture that this in unlikely except in the case of

symmetric cost functions and capacities. That is, in the asymmetric capacitated case, the

solution to the di�erential equation will typically violate the non-decreasing constraints at

some price.

6.3 Five �rm example system

To illustrate theorem 9, we consider a �ve �rm example system based on the cost data

presented in [8] for the �ve strategic �rm industry in England and Wales subsequent to the

1999 divestiture. Table 2 shows the cost parameters. Firms 2 and 5 have identical cost

functions.

Using the analysis in section 6.2.2, we �nd that the slopes of the a�ne solutions are:

� =

2
6666664

0:2840

0:1857

0:3718

0:3550

0:1857

3
7777775
;

and that the a�ne SFE is given by:

8p 2 [12;1); S?a�ne(p) =

2
6666664

0:2840(p� 12);

0:1857(p� 12);

0:3718(p� 8);

0:3550(p� 8);

0:1857(p� 12)

3
7777775
: (28)

(For prices below p = 12 pounds per MWh, the minimum capacity constraint is binding

on �rms 1, 2, and 5, so we only de�ne the a�ne solution for p � 12 pounds per MWh. A

piece-wise a�ne SFE for this case is derived in [8] and described in detail in section 11.2.)

Using any initial condition for (16) of the form (p; S?a�ne(p)), with p > 12 pounds per

MWh, will yield an a�ne solution that is identical to S?a�ne. For example, using p =

30 pounds per MWh and integrating backwards yields �gure 9. (In this �gure and most

subsequent �gures illustrating the �ve �rm example, �rm 1 is shown as a dashed line, �rms 2

and 5 are shown superimposed as a dash-dot line, �rm 3 is shown as a solid line and �rm 4

is shown as a dotted line.) The numerical solution of the di�erential equation di�ers very
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Figure 9: Solution of (16)

that matches a�ne SFE.

Firm 1 is shown as a dashed

line, �rms 2 and 5 are

shown superimposed as a

dash-dot line, �rm 3 is

shown as a solid line and

�rm 4 is shown as a dotted

line.

slightly from (28) because of numerical conditioning issues in the solution of the di�erential

equations. However, the correspondence with the exact a�ne solution is very close.

To illustrate that the solution of (16) will violate the non-decreasing constraints when the

solution is non-a�ne, we considered initial conditions that di�ered only very slightly from

the initial condition of p = 30 pounds per MWh and S?a�ne(p). In particular, we considered

the 32 vertices of the hypercube whose vertices are speci�ed by:

Si(p) = 0:999� S?a�ne
i (p); 1:001� S?a�ne

i (p); i = 1; : : : ; 5:

That is, we successively decreased and increased each entry in S?a�ne
i (p) by 0.1% and used

the resulting vector as the initial condition to integrate backwards from p = p.

The results of integrating from these 32 initial conditions are shown in �gure 10. Each

initial condition was integrated from p backwards until a price p0 was reached where the

non-decreasing constraints were violated signi�cantly for one of the �rms. In each case, the

trajectory for all �ve �rms was plotted for [p0; p]. Since the values of p0 varied with the initial

condition, the trajectories for most of the initial conditions can be individually distinguished

in �gure 10.

As previously, �rms 2 and 5 have identical costs. Their trajectories are shown as the

leftmost bundle of curves in �gure 10. Whenever �rms 2 and 5 are started with di�erent

initial conditions, the resulting trajectories for them will diverge. Firms 3 and 4 are the

rightmost pair of bundles of curves in �gure 10. Firm 1 appears as the middle bundle of

curves in �gure 10.

As shown in this �gure, for every one of the 32 initial conditions, the supply of either

�rm 1 or �rm 2 or �rm 5 violates the non-decreasing constraints for some prices between

26.5 and 30. In summary, in this example the di�erential equation (16) yields solutions that

violate the non-decreasing constraints when the initial conditions di�er even slightly from

satisfying the a�ne SFE conditions. Although this is not a proof in general, it suggests why

solutions of (16) may violate the non-decreasing constraints.
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tions of a point satisfying

the a�ne SFE.

6.4 Summary

The most serious di�culty with the di�erential equation approach to solving for the SFE is

that the di�erential equations do not \automatically" satisfy the capacity or non-decreasing

conditions. Theorem 9 implies that unless the cost functions are all very similar or there

are no capacity constraints then the non-decreasing constraints will typically be violated in

a solution of the di�erential equations, unless the range of realized prices is small enough

to only cover a segment of the solution that happens to be non-decreasing. The example in

section 6.3 shows that even a very slight deviation from the a�ne solution results in solutions

of (16) that are non-decreasing only over a narrow range of prices. If the load factor over the

time horizon were very close to 100% then such a solution of (16) would be an equilibrium.

However, if the load factor is signi�cantly below 100% then most such solutions would violate

the non-decresing constraints over the range of realized prices.

This analysis provides two observations. First, the usual approach to solving di�erential

equations to obtain the SFE may not work in the case of heterogeneous portfolios of gen-

eration with capacity constraints when the load factor deviates signi�cantly from 100%. In

this case, we must explicitly impose the non-decreasing constraints.

Second, as discussed in the introduction, a basic criticism of the SFE approach is that

there are multiple equilibria. Certainly, if every possible speci�cation of the initial conditions

for the di�erential equations (16) yielded an equilibrium then this extreme multiplicity of

equilibria would limit the predictive value of the SFE approach. However, when the load

factor deviates signi�cantly from 100%, many of these putative equilibria are ruled out by the

non-decreasing constraints. This strengthens the observations by Klemperer and Meyer in [1]

that were made for the symmetric case concerning the multiplicity of equilibria. Moreover,

the price cap condition (4), when it is binding on the behavior of �rms, further limits the

range of potential equilibria.

Solutions such as shown in �gure 10 could form part of an equilibrium only if either:

1. the range of realized prices was very restricted, or,

2. there were a discontinuity in the derivative of the supply functions.
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The �rst case could occur if the load factor were close to 100%. In this case, there would be

a multiplicity of equilibria, with the range depending on the range of the function N , but

not on the detailed dependence of N(t) on t. Conversely, extended time horizons having load

factors well below 100% rule out many of the solutions of (16) from being supply functions.

In the second case, we can imagine a discontinuous change in the behavior of the �rms

due to, for example, a binding capacity constraint being reached at a particular price. In this

case, we can imagine equilibrium solutions consisting of the union of solutions of (16) that are

\pasted" together at various break-points. We will con�rm this observation theoretically in

the next section and then see in section 11 that the numerical solutions have this appearance.

7 Strict satisfaction of non-decreasing constraints

In this section we show that although it is necessary to represent the non-decreasing con-

straints, they will be strictly satis�ed at typical equilibria. The intuition behind this appar-

ently paradoxical observation is that once the non-decreasing constraints are enforced, the

pro�t maximizing response of a �rm is strictly increasing. If the non-decreasing constraints

were relaxed then the pro�t maximizing response would no longer be increasing because of

the non-concavity in the pro�t function. This observation allows us to characterize SFEs in

more detail. In section 7.2 we illustrate these observations with a two �rm example.

7.1 Analysis

We �rst make some de�nitions to clarify the nature of \binding constraints."

De�nition 8 Consider supply functions S and suppose that P is the interval of realized

prices corresponding to S. Also suppose that for some �rm i and for some interval [p̂; �p] � P

we have that:

1. Sj; j 6= i is di�erentiable on [p̂; �p],

2. Si is constant on [p̂; �p], with 0 < Si(p) = qi < qi; 8p 2 [p̂; �p], and

3. the pro�t function is increasing with price in the interior of the interval in the following

sense:

8p 2 (p̂; �p); qi � (p� C 0(qi)(  +
X
j 6=i

S 0j(p)) > 0:

Then we say that the non-decreasing constraints are manifestly binding for �rm i on [p̂; �p].

2

De�nition 9 Consider supply functions S and suppose that P is the interval of realized

prices corresponding to S. Suppose that for some �rm i and for some interval [p̂; �p] � P we

have that:

8p 2 (p̂; �p); Si(p)� (p� C 0(Si(p))( +
X
j 6=i

S 0j(p)) = 0:

Then we say that the non-decreasing constraints are not apparently binding for �rm i on

[p̂; �p]. 2
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De�nition 10 Consider supply functions S and suppose that for �rm i, Si is the optimal

non-decreasing response to Sj; j 6= i. Consider relaxing the non-decreasing constraints on

the supply function of �rm i. If the globally optimal response of �rm i to Sj; j 6= i, given

the relaxed constraints, is not equal to Si then we say that non-decreasing constraints are

actually binding for �rm i. 2

The adjective \manifestly" is used in de�nition 8 to emphasize that the choice of the

supply function has been palpably restricted by the non-decreasing constraints. De�nition 9

of \not apparently binding" covers the case where the the choices of supply function for

�rm i locally maximize the pro�t function for a given price. De�nition 10 of \actually

binding" covers the case where relaxing the non-decreasing constraints would cause a di�erent

response. In principle, this could occur because either:

� the non-decreasing constraints were manifestly binding or

� the non-decreasing constraints were not apparently binding but yet the non-decreasing

constraints ruled out other responses having higher pro�ts.

The following theorem shows that under relatively mild conditions the non-decreasing

constraints cannot be manifestly binding. We show that it is impossible for the non-

decreasing constraints to be:

� not apparently binding up to some price p̂ and

� manifestly binding for prices above p̂.

That is, it is impossible for the supply function to become \at" over an interval of prices.

Moreover, this means that the non-decreasing constraints will always be not apparently

binding.

As we will show in the example in section 7.2, the non-decreasing constraints can be

actually binding. The conclusion is that while the non-decreasing constraints will be not

apparently binding they will, however, be actually binding.

Theorem 10 Let  > 0. Consider continuous and piece-wise continuously di�erentiable

supply functions S and suppose that P is the interval of realized prices corresponding to S.

Also suppose that for �rm i, Si is the optimal non-decreasing response to Sj; j 6= i. Consider

prices ~p; p̂; �p 2 P such that either:

� ~p < p̂ < �p or

� p̂ is equal to the minimum realized price and ~p = p̂ < �p.

Suppose that the non-decreasing constraints are not apparently binding for �rm i on [~p; p̂].

(If ~p = p̂ this condition is null.) Then the non-decreasing constraints cannot be manifestly

binding for �rm i on [p̂; �p].
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Figure 11: The functions

Si (shown solid) and S�
i

(shown dashed) de�ned in

proof of theorem 10.

Proof Suppose that the non-decreasing constraints were manifestly binding for �rm i on

[p̂; �p]. By adjusting ~p and �p if necessary we can assume that Sj; j = 1; : : : ; n are continuously

di�erentiable on the intervals [~p; p̂) and (p̂; �p]. (That is, the functions Sj; j = 1; : : : ; n may

fail to be continuously di�erentiable only at p = p̂.) The situation is shown in �gure 11.

The function Si is illustrated with the solid line. (Note that the function Si is drawn on the

horizontal axis while its argument is drawn on the vertical axis.)

Let P : [0; 1] ! P be the realized prices at each time in the time horizon. Let ~t > t̂ > �t

be the times corresponding to ~p; p̂; �p, respectively. The residual demand D(t; p)�
P

j 6=i Sj(p)

faced by �rm i at times t = tildet; t̂; �t is also shown.

Consider a parameter � � 0 and the following construction of functions S�
i : [p; p]! [0; pi]

and P � : [0; 1]! [p; p]. The functions S�
i and P � are parametrized by �.

First, for each p 2 [p; ~p] and each p 2 [�p; p], let S�
i (p) = Si(p), so that S�

i matches Si

except on the interval [~p; �p]. Similarly, for each t 2 [0; �t] and each t 2 [~t; 1] let P �(t) = P (t).

Second, for each t 2 [�t; t̂] �nd p such that:

N(t)� p�
X
j 6=i

Sj(p) = qi � �

 
t� �t

t̂� �t

!
; (29)

and de�ne S�
i (p) = qi��

�
t��t

t̂��t

�
and P �(t) = p. (By assumption, since  > 0, the left hand side

of (29) is strictly decreasing with p so that there is a solution.) By construction, note that

p 2 [P �(t̂ ); �p] � [p̂; �p] and that S�
i is non-decreasing on [P �(t̂ ); �p] and that S�

i is continuous

at p = �p. The function S� is shown dashed in �gure 11. Also P � is non-increasing on [0; t̂].

Furthermore, by the implicit function theorem we have that the derivatives of these
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functions with respect to �, evaluated at � = 0 are, respectively:

8t 2 [�t; t̂];
d[P �(t)]

d�
(0) =

1

 +
P

j 6=i S
0
j(P (t))

 
t� �t

t̂� �t

!
;

� 0;

8t 2 [�t; t̂];
d[S�

i (P
�(t))]

d�
(0) = �

 
t� �t

t̂� �t

!
;

= �

0
@ +X

j 6=i

S 0j(P (t)

1
A d[P �(t)]

d�
(0):

Third, for each t 2 [t̂; ~t] �nd p such that:

N(t)� p�
X
j 6=i

Sj(p) = Si � �

 
~t� t

~t� t̂

!
;

and de�ne S�
i (p) = Si � �

�
~t�t
~t�t̂

�
and P �(t) = p. By construction, note that p 2 [~p; P �(t̂ )] �

[~p; �p] and that S�
i is non-decreasing on [~p; P �(t̂ )] and that S�

i is continuous at p = ~p and at

p = P �(t̂ ). Also, The function S� is shown dashed in �gure 11. P � is non-increasing on [t̂; 1].

Again, by the implicit function theorem we have that the derivatives of these functions

with respect to �, evaluated at � = 0 are, respectively:

8t 2 [�t; t̂];
d[P �(t)]

d�
(0) =

1

 +
P

j S
0
j(P (t))

 
~t� t

~t� t̂

!
;

� 0;

8t 2 [�t; t̂];
d[S�

i (P
�(t))]

d�
(0) = �

0
@ +X

j 6=i

S 0j(P (t)

1
A d[P �(t)]

d�
(0):

We now consider the change in pro�t accruing to �rm i by changing its bid from Si to

S�
i . In particular, we calculate the derivative of the pro�t with respect to �, evaluated at
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� = 0. We have that:

d[�i]

d�
(0)

=
d

"Z ~t

t=�t
�itdt

#

d�
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d

"Z ~t

t=�t
S�
i (P

�(t))P �(t)� Ci(S
�
i (P

�(t)))dt

#

d�

(0);

=

Z ~t

t=�t

"
Si(P (t))

d[P �(t)]

d�
(0) + (P (t)� C 0

i(Si(P (t)))
d[S�

i (P
�(t))]

d�
(0)

#
dt;

=

Z t̂

t=�t

1

 +
P

j 6=i S
0
j(P (t))

2
4qi � (P (t)� C 0

i(qi))

0
@ +X
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S 0j(P (t))

1
A
3
5
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t̂� �t

!
dt

+
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P

j S
0
j(P (t))

�

2
4Si(P (t))� (P (t)� C 0

i(Si(P (t))))

0
@ +X
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S 0j(P (t))

1
A
3
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t� �t

t̂� �t

!
dt;

=
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P
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0
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2
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0
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!
dt;

since the non-decreasing constaints are not apparently binding for �rm i on [~p; p̂];

=

Z t̂

t=�t

1

 +
P

j 6=i S
0
j(P (t))

2
4qi � (P (t)� C 0

i(qi))

0
@ +X

j 6=i

S 0j(P (t))

1
A
3
5
 
t� �t

t̂� �t

!
dt;

> 0;

since the integrand is strictly positive over almost all of the interval [�t; t̂] because the non-

decreasing constraints are manifestly binding on [p̂; �p]. But this contradicts the hypothesis

that Si is an optimal response to (Sj)j 6=i. Contradiction. 2

Corollary 11 Suppose that S?
is an SFE with each function S?

i ; i = 1; : : : ; n piece-wise

continuously di�erentiable on the range of realized prices P. Consider a �rm i and prices

~p; p̂; �p 2 P such that either:

� ~p < p̂ < �p or

� p̂ is equal to the minimum realized price and ~p = p̂ < �p.

Suppose that the non-decreasing constraints are not apparently binding for �rm i on [~p; p̂].

(If ~p = p̂ this condition is null.) Then the non-decreasing constraints cannot be manifestly

binding for �rm i on [p̂; �p]. 2
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The following corollary allows us to characterize SFEs:

Corollary 12 Consider a piece-wise continuously di�erentiable SFE S? = (S?
i )i=1;:::;n. Con-

sider any interval [p̂; �p] of prices such that:

� the S?
are continuously di�erentiable,

� the capacity constraints of �rms i1; i2; : : : ; im are not binding, and

� the capacity constraints of the other �rms are binding.

Then the supplies of �rms i1; i2; : : : ; im on [p̂; �p] match a solution of (16) where instead

of having n �rms with cost functions C1; : : : ; Cn, respectively, there are m �rms with cost

functions given by the cost functions Ci1; Ci2; : : : ; Cim of the m �rms i1; i2; : : : ; im.

Proof Note that by corollary 11, the non-decreasing constraints cannot be manifestly

binding for �rms i1; i2; : : : ; im on [p̂; �p]. Since the supply functions are continuously di�er-

entiable on this interval, they must satisfy the optimality conditions (10). But rearranging

these optimality conditions, and noting that S?0
j (p) = 0 for p 2 [p̂; �p] and j 6= i1; i2; : : : ; im,

we �nd that S?
i ; i = i1; i2; : : : ; im must satisfy an m �rm version of (16). 2

Corollary 12 allows us to characterize piece-wise continuously di�erentiable SFEs. In

particular, as suggested in section 6.4, such SFEs involve the pasting together of solutions

of (16). The points of non-di�erentiability in the SFE occur where the solutions of (16) for

adjacent intervals are pasted together. Unfortunately, since we do not in general know where

the break-points of the pieces of S? will lie, we cannot usually use corollary 12 to directly

construct an SFE. Because the solutions in each interval satisfy (16), it is only the range of

the load-duration characteristic N , and not its exact functional form, that determines the

possible equilibria as shown in:

Corollary 13 The set of possible piece-wise continuously di�erentiable equilibria depends

on the range of the load-duration characteristic but not on its exact form.

Proof Consider a piece-wise continuously di�erentiable SFE S? corresponding to a load-

duration characteristic N1. By assumption, we can partition the range of realized prices into

intervals such that S? is continuously di�erentiable on the interior of the interval and is a

non-decreasing solution of (16).

Suppose that N2 is another load-duration characteristic that has the same range as N1.

But since the range of N2 is the same as the range of N1, S
? is piece-wise continuously

di�erentiable and non-decreasing over the (identical) range of realized prices for N2. That

is, S? is an SFE corresponding to the load-duration characteristic N2. 2

Although the set of equilibria is independent of the exact functional form of the load-

duration characteristic, in a numerical framework where we consider convergence to (one

particular) equilibrium, it may be the case that the form of the load-duration characteristic

a�ects which of the equilibria is exhibited by the numerical framework.
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7.2 Two �rm example system

To see the implications of theorem 10 and its corollaries, we will consider the following

two �rm market. To motivate the necessity of explicitly representing the non-decreasing

constraints, we will postulate a supply function for �rm 2 and then consider the optimal

reaction of �rm 1.

The demand is:

8p 2 R+ ; 8t 2 [0; 1]; D(p; t) = 20 + 4:6(1� t)� 0:1p:

Firm 2 has a maximum capacity of q2 = 17:1 and is assumed to have bid a supply function

of:

8p 2 R+ ; S2(p) =

(
0:9p; if p � 19,

17:1; if p > 19.

This function is non-decreasing. In the context of a multi-�rm market, we can also think of

S2 as being the aggregate supply of all �rms besides �rm 1.

The cost function for �rm 1 is:

8q1 2 R+ ; C1(q1) =
1

7
(q1)

2 + 4q1;

with marginal cost C 0
1(q1) =

2

7
(q1) + 4. We will assume that �rm 1 has the same capacity as

�rm 2, so that q1 = 17:1. We will consider the optimal response of �rm 1 to the given supply

function of �rm 2. (The resulting pair of supply functions S1 and S2 is not necessarily an

equilibrium unless we make further assumptions but serves to illustrate the importance of

the non-decreasing constraints.)

7.2.1 Ignoring the non-decreasing constraints

We �rst consider the optimal response by �rm 1, ignoring the non-decreasing constraints.

This simply amounts to maximizing the pro�t per unit time for �rm 1 at each time. To

maximize the pro�t per unit time to �rm 1 for various times, we �rst observe that the pro�t

function is piece-wise concave, with the pieces de�ned by whether or not the price is above

p = 19. In fact, for some times t, the pro�t per unit time has two local maxima and so

we must search over both pieces to �nd the value of q1t that globally maximizes the pro�t

per unit time of �rm 1. We will consider the conditions for maximizing pro�t per unit time

at two particular times: namely t = 0 and t = 1. This will su�ce to demonstrate that a

function S1 that globally maximizes pro�t at each price would not be non-decreasing.

For t = 1, the maximum pro�t per unit time for �rm 1 in the region p � 19 occurs for

p1 = 13 and q11 = 7. The corresponding pro�t is �11 = 56. For the region p > 19, it can

be veri�ed that the pro�t is always decreasing with p, and the pro�t is continuous across

the regions as a function of p. Therefore, the globally optimal pro�t occurs at p1 = 13 and

q11 = 7.

At t = 0, the maximum pro�t per unit time for �rm 1 in the region p � 19 occurs for

p � 15:59, with corresponding pro�t of 92:83. For prices p > 19, the pro�t is maximized for

p0 = 40, with corresponding quantity q10 = 3:5 and pro�t 124.25. Therefore, the globally

optimal pro�t �10 = 124:25 occurs at p0 = 40 and q10 = 3:5.
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The signi�cance of this example is that if we seek to use the pairs (p0; q10) and (p1; q11)

to de�ne points in the supply function S1 for �rm 1, we have just found that the resulting

function will violate the non-decreasing constraint. The example relies on the particular

choice of cost and demand, but many similar choices will yield similar results. For example,

Anderson and Philpott [18] provide another example.

A further complicating issue is that we must perform a maximization over a non-concave

pro�t function, so that the necessary conditions obtained from di�erentiating the pro�t are

not su�cient. In general, at any price where the supply function of a �rm j 6= i changes

slope, there will be a break-point (and potentially a non-concavity) in the pro�t function for

�rm i.

In this example, the break-point in the pro�t function of �rm 1 is due to the change in

the slope of the supply function of �rm 2 as it reaches its full capacity q2. Such a break-point

can also occur due to the capacity constraints of fringe �rms. This issue prompted an ad

hoc approach in [8].

7.2.2 Including non-decreasing constraints

We now consider the optimal response S1 of �rm 1 to S2 considering the non-decreasing

constraints. Assume a price cap of p = 50. To approximate the optimal response of �rm 1,

we approximate the function space S1 by a subspace S1 of S1 and choose S1 from S1. We

specify Si as the set of piece-wise linear non-decreasing continuous functions with break-

points at p = 0; 4; 10; 13; 16; 19; 40; 50. Since the marginal cost of �rm 1 at zero production

is 4, the optimal response of �rm 1 must involve zero production up to price p = p = 4.

At a price of p = p = 50, we specify that the �rm must produce at full output q1, so this

leaves the values S1(10); S1(13); S1(16); S1(19) and S1(40) of the supply function at prices

p = 10; 13; 16; 19; 40 to be speci�ed. For the resulting supply function to be non-decreasing,

we impose:

0 � S1(10) � S1(13) � S1(16) � S1(19) � S1(40) � q1:

We calculated the pro�t �1 of �rm 1 according to (8), given the assumptions on de-

mand and S2. Exact integration was used. The pro�t is not concave as a function of

S1(10); S1(13); S1(16); S1(19), and S1(40). For example, �gure 12 shows pro�ts versus choices

of S1(19) and S1(40) for S1(10) = S1(13) = S1(16) = 1. The maximum pro�t point

given S1(10) = S1(13) = S1(16) = 1 is shown as a bullet. Maximum pro�t occurs for

S1(19) = 1; S1(40) = 5. The pro�t curves up as S1(19) decreases.

Because of the non-concavity of the pro�t function, we used a grid search to �nd the

(approximate) globally optimal choice for S1(10); S1(13); S1(16); S1(19); S1(40). We found

that the maximum pro�t occurs for S1(13) � 7; S1(16) � 9, with the realized prices being

contained in the interval [13; 16]. Moreover, given S1(13) = 7; S1(16) = 9, the pro�t �1
is independent of S1(10); S1(19), and S1(40) for values of S1(10); S1(19), and S1(40) that

satisfy:

0 � S1(10) � S1(13); S1(16) � S1(19) � S1(40) � q1:

Figure 13 shows the pro�t �1 of �rm 1 for S1(10) = 1; S1(19) = S1(40) = 17 and versus

choices of S1(13) and S1(16) in the range 1 � S1(13) � S1(16) � 17. The maximum pro�t

point is shown as a bullet.
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Figure 12: Pro�t for �rm 1

for S1(10) = S1(13) =

S1(16) = 1. and versus

choices of S1(19) and S1(40)

in the range 1 � S1(19) �

S1(40) � 17.

Since the optimal response satis�es S1(13) � 7 < S1(16) � 9, the optimal supply function

of �rm 1 is strictly increasing. That is, the non-decreasing constraints are not manifestly

binding over the range of realized prices. That is, S1 satis�es theorem 11. However, the

discussion in section 7.2.1 shows that the optimal response would change if the non-decreasing

constraints were relaxed for �rm 1. That is, the non-decreasing constraints are actually

binding.

As demonstrated by �gure 12, the pro�t function for �rm 1 is not concave as a function

of S1(10); S1(13); S1(16); S1(19); S1(40) when the supply function is piece-wise linear with

break-points at p = 4; 10; 13; 16; 19; 40. The pro�ts for small values of S1(19) and S1(40)

bend up as S1(19) approaches zero. A fortiori the pro�t of �rm 1 is not concave as a function

of S1 2 S1. However, the integration of the pro�t function over time in (8) has \smeared" out

the non-concavities of the underlying pro�t per unit time functions. In particular, recalling

the optimal behavior for �rm 1 just considering time t = 0, we found previously that �rm 1

should bid a quantity q10 = 3:5 at a price of p0 = 40. That is, S1(40) = 3:5, which would

require that S1(19) � 3:5 to satisfy the non-decreasing constraint. This strategy corresponds

to values of (S1(19); S1(40)) that are near the origin in �gure 12. However, the implications

of this choice at other times is to signi�cantly reduce the overall pro�t: for this reason, larger

values of S1(19) and S1(40) actually yield the global optimum pro�t for �rm 1.

In the next section we discuss an approach to numerically estimating equilibria when

the cost functions are asymmetric, while taking explicit account of the non-decreasing and

capacity constraints and the price cap. This will allow us to empirically investigate the

issue of multiplicity of equilibria. We will see that the implications of the theorem proved in

section 7.1 are corroborated by the numerical results:

� the solutions are piece-wise di�erentiable and appear to match solutions of (16) between

points of non-di�erentiability;

� the non-decreasing constraints are never manifestly binding over the range of realized
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Figure 13: Pro�t for �rm 1

versus choices of S1(13) and

S1(16) in the range 1 �

S1(13) � S1(16) � 17.

prices; however, the non-decreasing constraints are actually binding and their repre-

sentation is essential in order to calculate the equilibria.

8 Iterations in function space

Because of the di�culties with the di�erential equations approach to seeking the SFE in

general, we take an iterative numerical approach. Such numerical approaches can usually be

expected to yield only stable equilibria, unless started at an equilibrium or unless the iterative

process produces a particular iterate that happens to be an equilibrium. In the following

sections, we describe the step direction, updated, and step size and the computational issues

involved.

8.1 Step direction

Given a current estimate of the equilibrium supply functions, denoted S
(�)
i at iteration �, we

calculate the following step directions:

8i;�S
(�)

i 2 argmax
�Si

f~�i(S
(�)

i +�Si; S
(�)

�i )jS
(�)

i +�Si 2 Sig; (30)

where:

� ~�i is an approximation to �i,

� S
(�)

�i = (S
(�)

j )j 6=i, and

� Si is a �nite dimensional convex subset of Si.
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8.2 Supply function subspace

The set Si consisted of piece-wise linear non-decreasing functions with break-points evenly

spaced between (p + 0:1) pounds per MWh and (p� 0:1) pounds per MWh, where p is the

price minimum and p is the price cap. At p = p, we de�ne Si(p) = 0. At p = p, we require

Si(p) = qi. That is, Si is convex.

For most cases, we used 40 break-points. We also tested some of the cases using functions

with other numbers of break-points to investigate whether any of the results were an artifact

of the number of break-points.

8.3 Update and step size

An initial guess S
(0)

i ; i = 1; : : : ; n was used as a starting function to begin the iterations. We

then update the iterates according to:

8�; 8i; S
(�+1)

i = S
(�)

i + ��S
(�)

i ;

where � 2 (0; 1] is a step-size. Since S
(�)

i and S
(�)

i + �S
(�)

i are both elements of the convex

set Si, then so is S
(�+1)

i .

We tested several step-size rules, including an elaborate \Armijo"-like rule [19] that

sought to �nd directions at each iteration that guaranteed improvement in the pro�t of all

�rms. However, we found that a �xed step-size of � = 0:1 performed satisfactorily.

Day and Bunn [9] take a similar approach, except that they only �nd an approximate

local maximizer of (30) at each iteration and use a step size of � = 1 at each iteration. Their

approach requires less e�ort per iteration, but because of the inexibility of the unity step

size does not appear to converge [9, x4].

8.4 Pro�t function approximation

We estimated the integral in the pro�t function by dividing the time horizon into intervals

having end-points at:

� t = 0,

� the times corresponding to the realized prices at the break-points of the supply function,

and

� t = 1.

Linear interpolation was used to �nd the prices corresponding to t = 0 and t = 1, while (5)

was used to evaluate the time corresponding to each price break-point. (If a price break-point

corresponded to a \negative" time or to a time greater than one, it was simply discarded.

Only realized prices, that is, prices for which 0 � t � 1 in (5), are relevant in calculating the

pro�t over the time horizon in (8).)

In some cases, we used the trapezoidal rule to approximate the integral on each interval.

In other cases, we integrated the quadratic function on each interval exactly.
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8.5 Computational issues

Iterating in the function space of supply functions requires considerable computational e�ort

at each iteration and is subject to the drawback that the problem of �nding the search

direction may have multiple local optima. In practice, we use an iterative local search

algorithm to seek the solution of (30) and do not guarantee to �nd the global optimum

of (30). Consequently, even if the sequences of iterates fS
(�)
i g

1
�=0 converge this does not by

itself prove that an equilibrium has been found. We do not perform the necessary global

optimization checks to verify that an equilibrium has been found.

As we argued in section 7.2, because of the integrated pro�t function this issue may be

less problematic in the supply function space than it appears at �rst. This is because the

non-concavity shown in the two �rm example system in section 7.2 involved a supply bid by

�rm 2 that was extreme in that it became nearly at at high prices. If a good initial guess of

the solution of (30) can be used, such as a known equilibrium of a similar problem, then the

low pro�t regions such as S1(19); S1(40) � 0 in the example in section 7.2 can be avoided.

All software was implemented using Matlab and the Matlab Optimization Toolbox.

9 Three �rm numerical results

We used the symmetric three �rm example to illustrate the results on stability of equilibria

from section 5. In the following section we discuss the demand, price cap and price minimum,

the supply functions, the starting functions, and the results.

9.1 Demand

We assumed a demand slope of  = 0:125 GW per (pound per MWh) and a base-case load

duration characteristic of:

8t 2 [0; 1]; N(t) = 7 + 20(1� t);

with quantities measured in GW. That is, N varied linearly from 27 to 7 GW.

9.2 Price cap and price minimum

A price cap of p = 20 pounds per MWh and a price minimum of p = 9 pounds per MWh

was used.

9.3 Supply functions

We used 40 break-points for most cases, with 20 break-points used to test the sensitivity of

the results on the number of break-points.

9.4 Starting functions

In the case of symmetric cost functions and no capacity constraints nor price caps, we have

already exhibited the range of equilibria between S?Cournot and S?comp. We used a range of
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tions for symmetric three

�rm example.
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Figure 15: Perturbed start-

ing functions constructed

according to de�nition 4.

such equilibria as starting functions. We calculated the equilibria using (16) and included

SFEs that were more competitive and also SFEs that were less competitive than the a�ne

SFE S?a�ne. The starting functions are illustrated in �gure 14. The a�ne SFE is shown

dashed, while the others are shown solid. Since each SFE is symmetric, each supply function

illustrated represents the supply functions of all three �rms for that equilibrium.

We also used the construction in de�nition 4, with p� � p?0 � 1 pound per MWh, to

perturb the SFEs slightly. These perturbed SFEs are shown in �gure 15. The nearly vertical

line shows the vicinity of the peak realized prices for these supply functions.

9.5 Results using SFEs as starting functions

The results of using the SFEs as starting functions are shown in �gure 16. The �gure shows

pro�ts versus iteration for one of the �rms (the pro�ts are identical for each �rm) for each

of the starting functions. The case of the a�ne SFE is shown dashed. In every case, the

pro�ts are identical at each iteration. This shows that the numerical framework evaluates

the pro�ts correctly for these starting functions.
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iteration for SFE starting

functions.

9.6 Results using perturbed SFEs as starting functions

The results of using the perturbed SFEs as starting functions are shown in �gure 17. The

�gure shows pro�ts versus iteration for a �rm for each of the starting functions. The results

are very di�erent to those shown in �gure 16. In particular, except for the a�ne SFE and

the two SFEs either side of it, the sequence of pro�ts di�ers signi�cantly from the starting

pro�ts. For all but these three starting functions, the sequence of pro�ts appears to be

drifting towards a band of pro�ts that is lower than the pro�ts for the a�ne SFE. This

result is, however, dependent on the details of the numerical calculation. For example,

�gure 18 shows the results using the similar starting functions but only 20 break-points in

the functions. The sequence of pro�ts is rather di�erent.

By corollary 8, all SFEs produced according to (16) except the a�ne SFE are unstable.

However, from a numerical perspective, it is not surprising that the SFEs that are \close"

to the a�ne SFE appear to be stable on the basis of numerical calculations. Interestingly,

the numerical results seem to also suggest that there is a band of stability involving SFEs

that yield lower pro�ts than the a�ne SFE. This may be an artifact of the use of piece-wise

linear approximations to the functions, since the band seems to be dependent, for example,

on the number of break-points.

10 Simulation assumptions for �ve �rm example

In the following sections we discuss the costs and capacities, the price cap and price minimum,

the starting functions, and the stopping criterion for assessing whether or not there are

multiple equilibria.

10.1 Cost functions and capacities

We again consider the �ve �rm example �rst introduced in section 6.3. The cost data is as

in table 2. We also used the capacities as presented in [8] for the �ve strategic �rm industry
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Firm i = 1 2 3 4 5

qi(GW) = 5.70945 3.35325 10.4482 9.70785 3.3609

Table 3: Capacity data based on �ve �rm industry described in [8].

in England and Wales subsequent to the 1999 divestiture. Table 3 shows the maximum

capacities. The total installed capacity is approximately 32.6 GW and the marginal cost at

maximum production is roughly 27 pounds per MWh for all �rms. Firms 2 and 5 are nearly

identical and have the smallest capacity. Firms 3 and 4 have the largest capacity.

10.2 Demand

We assumed a demand slope of  = 0:1 GW per (pound per MWh) and a base-case load

duration characteristic of:

8t 2 [0; 1]; N(t) = 10 + 25(1� t);

with quantities measured in GW. That is, N varied linearly from 35 to 10 GW. This load-

duration characteristic is illustrated in �gure 1. The load factor is approximately 30%. (This

is considerably smaller than a typical daily load factor. However, the �ve �rms that we model

from England and Wales do not include the baseload nuclear generation, so that the N we

use is actually a residual after baseload is subtracted. Alternatively, we can imagine that

there has been some forward contracting of baseload capacity [20].)

At a demand of 30 GW and a price of 30 pounds per MWh, the price elasticity of demand

is 0.1. The \choke price" at peak is N(0)= = 350 pounds per MWh, while the \choke price"

at minimum demand is N(1)= = 100 pounds per MWh.

Since the maximum capacities of the �ve �rms sums to approximately 32.6 GW and the

price cap was 30 pounds per MWh or above, there is enough capacity to meet the peak

demand at a price that is below the price cap. For the price cap of 30 pounds per MWh, the

peak demand can only just be met. For price caps up to approximately 60 pounds per MWh,

each �rm is \pivotal" in that if any �rm withdrew all its capacity from the market then the

price would rise to the price cap at some times around peak demand and non-economic

rationing would result.

As sensitivity cases, we also considered N varying linearly from:

1. 35 to 20 GW,

2. 20 to 10 GW,

3. 40 to 10 GW, and

4. 10 to 1 GW.

The �rst and second sensitivity cases divide the base case time horizon into peak (35{20 GW)

and o�-peak (20{10 GW) times. Combining the results from both allows an evaluation of
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how the load factor a�ects the equilibrium pro�ts and prices. The third sensitivity case

requires demand rationing even with a price cap of 50 pounds per MWh. The last sensitivity

case investigates when minimum capacity constraints are binding on some of the �rms.

The assumption of a linear load-duration characteristic is not realistic, but simpli�es the

computational implementation because N can be inverted easily. By corollary 13, the set of

SFEs depends on the range of N but not on its detailed functional form and so the candidate

equilibria we obtain could also be used to estimate pro�ts with a more realistic load-duration

characteristic. Nevertheless, the assumption of a linear N may a�ect which equilibrium is

exhibited by the numerical framework if there are multiple equilibria.

10.3 Price cap and price minimum

A price cap of p = 40 pounds per MWh was used as the base-case price cap. Since the

maximum marginal cost of production is approximately 27 pounds per MWh, the base case

price cap is nearly 50% higher than the maximum marginal production cost. Sensitivity

cases with price caps in the range of 30{80 pounds per MWh were also considered. We also

considered the case of bid caps at p = 40 pounds per MWh.

For the cases with N(1) � 10, even competitive bids by all the players would result in

prices above 12 pounds per MWh. A price minimum of p = 12 pounds was used for most

of these cases. A sensitivity case using p = 8 pounds per MWh was used to verify that the

choice of p did not tangibly a�ect results. The price minimum of p = 8 pounds per MWh

was also used for the cases with N(1) = 1 GW.

10.4 Starting functions

In the case of symmetric cost functions and no capacity constraints nor price caps, we

have already exhibited a range of equilibria, including the three equilibria: S?Cournot; S?a�ne,

and S?comp. Unfortunately, for the asymmetric cost functions we consider, supply functions

S?Cournot and S?comp constructed using (16) with Cournot and competitive initial conditions,

respectively, both violate the non-decreasing constraints for prices below the peak realized

price. The functions S?Cournot
i ; i = 1; : : : ; n are illustrated in �gure 19 and violate the non-

decreasing constraints for prices less than about 64 pounds per MWh. (We continue to use

a superscript ? for these functions, although they are not even allowable supply functions

if demand results in prices being realized on which the functions are not non-decreasing.)

At a price of 64 pounds per MWh, the supply is approximately 22 GW. This corresponds

to a value on the load-duration characteristic of N(t) = 28. That is, S?Cournot
i could be an

SFE for a system with load-duration characteristic that had range [28; 35], which is a load

factor of about 80%. (We note that even in this case, S?Cournot
i is concave for �rms 1, 3, 4,

so that the equilibrium may be unstable.) For load factors below 80%, as in our example

cases, S?Cournot
i violates the non-decreasing constraints over the range of realized prices and

therefore is not an equilibrium for such load-duration characteristics.

Were were unable to solve the di�erential equations starting from the competitive initial
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condition to obtain S?comp. However,

lim
p!p

comp�

0

S?comp0(p) =

2
6666664

�1

�1

+1

+1

�1

3
7777775
;

where p ! p
comp�
0 means the limit from below. That is, S?comp must also violate the non-

decreasing constraints. We were able to solve the di�erential equations for initial conditions

nearby to the competitive initial condition. One such solution is illustrated in �gure 20. All

such nearby solutions violate the non-decreasing constraints.

The function S?a�ne is well-de�ned in both the symmetric and asymmetric cases and we

use it as a starting function. However, since S?Cournot and S?comp are not allowable functions,

we de�ned two other starting functions, one less and the other more competitive than the

a�ne SFE S?a�ne. In particular, for the unconstrained and no price cap case we used three
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di�erent starting functions:

� \uncapacitated competitive," Scomp where the supply functions are the inverses of the

marginal cost functions,

� \uncapacitated a�ne SFE," S?a�ne where the supply functions are given by the solution

of the a�ne SFE (14), with coe�cients �i satisfying (15), and

� \uncapacitated Cournot," SCournot where quantities and prices under Cournot com-

petition are calculated for each t 2 [0; 1] and a supply function drawn through the

resulting price-quantity pairs.

For the maximum capacity constrained and price-capped cases, we used the following three

starting functions:

� \capacitated competitive," where the supply functions are the inverses of the marginal

cost functions, but limited by the maximum capacity, as shown in �gure 21,

� \capacitated a�ne SFE," where the supply functions are given by the solution of the

a�ne SFE, except that the values of Si are limited by the maximum capacity, as shown

in �gure 22, and

� \price-capped Cournot," where Cournot quantities and prices are calculated for each

t 2 [0; 1] and a supply function drawn through the resulting price-quantity pairs, but

modi�ed to satisfy (4), as shown in �gure 23.

(In each case, we have graphed the supply function only for prices greater than 12 pounds per

MWh, to avoid the issue of minimum capacity constraints under the assumption that realized

prices are always at least 12 pounds per MWh.) We will discuss this issue, and provide a

generalization of S?a�ne when there are minimum capacity constraints in section 11.2.) In

summary, the starting functions for the capacitated and price-capped cases are obtained

by calculating a supply curve under the assumption of no capacity constraints and then

truncating the supply curve to satisfy the capacity constraints and then (in the case of price-

capped Cournot) rede�ning the supply function at the price p = p so that it satis�es (4).

Firms 2 and 5 are essentially identical and their supply functions appear superimposed

as the leftmost dash-dot curve in �gures 21{23 and in all subsequent �gures. Firms 3 and 4

have the largest capacity and their supply functions appear as the solid and dotted curves,

respectively, at the right of �gures 21{23 and in all subsequent �gures. (In �gure 23, the

supply functions of �rms 3 and 4 are almost superimposed.) The supply function of �rm 1

appears as the dashed curve in the middle of �gures 21{23 and in all subsequent �gures.

Although the starting functions are not equilibrium supply functions for the capacitated

and price-capped cases, we can still consider the resulting prices if the �rms were to bid

these supply functions. The price-duration curves for the base case demand conditions

corresponding to the �rms bidding the capacitated competitive, the capacitated a�ne SFE,

and the price-capped Cournot supply functions, respectively, are shown in �gures 24{26,

respectively. Given bids equal to the capacitated competitive supply function, no �rm ever

reaches its capacity and so the price-duration curve in �gure 24 is linear.
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Given bids equal to the capacitated a�ne SFE supply functions, capacity constraints are

reached for �rms 2 and 5 at a price of about 30 pounds per MWh, so that the price-duration

curve in �gure 25 bends upward for peak demand times near to t = 0. A reasonable

hypothesis is that the capacitated a�ne SFE starting function is in the vicinity of the

equilibrium for the base case since it is the equilibrium if the capacity constraints are not

binding.

Given bids equal to the price-capped Cournot supply function, no �rm ever reaches its

capacity. However, the price cap is binding over most of the time horizon as shown in

�gure 26. As suggested in the introduction, the prices and pro�ts corresponding to the

price-capped Cournot supply function may be a reasonable prediction of the equilibrium

behavior when �rms face the price cap but are not required to bid consistently across the

time horizon or if the load-duration characteristic is piece-wise constant. We will use these

\price-capped Cournot" prices and pro�ts as a benchmark to evaluate the e�ect of requiring

supply function bids that are consistent over the time horizon. (For comparison, the Cournot

price corresponding to the peak time and with no price cap is around 80 pounds per MWh.)

10.5 Criterion for assessing existence of multiple equilibria

In experiments, we found that even after a large number of iterations, the values of the

supply functions were still changing by signi�cant amounts from iteration to iteration. In

particular, the L1 norm of the di�erence between successive iterates was on the order of a few

percent of the L1 norm of the iterate itself. Moreover, supply functions change visibly from

iteration to iteration, with the position of features such as points of non-di�erentiability in

the supply functions slowly drifting over successive iterations.

In contrast, pro�t at each iteration showed much steadier progress. De�ning pro�t at

iteration � according to (8) with the supply functions S
(�)

i used to specify the price function

through (6), we found that the pro�ts typically changed by less than 0.1% from iteration to

iteration after 100 iterations. Moreover, the pro�ts typically reach a quasi-steady state level

within about 20 iterations.

As suggested by [9], the changes in bid functions from iteration to iteration may be

evidence of Edgeworth cycles. However, the steadiness of the pro�t functions suggests that

the changes in the supply functions may simply be an artifact of the numerical calculations.

In assessing whether or not there are multiple equilibria, we must distinguish di�erences

due to artifacts of the calculations from truly di�erent equilibria. We apply the following ad

hoc criterion. We deem two candidate equilibria to be the same if:

� for each �rm, the pro�ts are within 2% in each candidate equilibrium,

� for each �rm, the supply functions have the same general shape in each candidate

equilibrium over the range of realized prices, and

� the price-duration curves have the same general shape in each candidate equilibrium

(and, in particular, have the same peak realized price.)

For each case, we iterated 100 times from the starting function and used the results from

iteration 100 to assess whether or not candidate equilibria were the same or di�erent.
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When multiple equilibria are observed, we consider the range of equilibrium outcomes.

In assessing whether the range of pro�ts is relatively large or small, we compare the range

of pro�ts for the various equilibria to the range between:

� the pro�ts that would accrue if all �rms bid the capacitated competitive supply func-

tion, shown in �gure 21 and

� the pro�ts that would accrue if all �rms bid the price-capped Cournot supply function,

shown in �gure 23.

That is, the di�erence between the competitive and Cournot pro�ts provides a scale for

assessing the relative spread of pro�ts when there are multiple equilibria.

11 Five �rm numerical results

In this section, we report results of several cases:

� no capacity constraints,

� minimum capacity constraints,

� base case demand and supply conditions,

� changed price caps,

� increased capacities,

� increased load factor,

� increased demand.

We investigate empirically the conditions for the results to exhibit multiple equilibria and

also the qualitative e�ects of the changes compared to the base case.

11.1 No capacity constraints

If market rules require that an a�ne supply function be bid by each �rm, then in the case

of no capacity constraints the a�ne SFE S?a�ne is the unique SFE. If market rules allow

nonlinear supply functions, then in the case of no capacity constraints there is a continuum

of supply function equilibria, with the a�ne solution S?a�ne being one of them.

We used the software to solve the no capacity constraints, no price cap, and nonlinear

bid supply function case for the base case demand. We used starting functions equal to,

respectively:

� the uncapacitated competitive supply function, Scomp,

� the uncapacitated a�ne SFE supply function S?a�ne, and

� the uncapacitated Cournot supply function, SCournot.

The test run serves to verify the operation of the software on a problem for which we know

one of the equilibria, namely the a�ne SFE. Using the a�ne SFE as a starting function

serves to verify that the software evaluates the pro�t correctly.
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11.1.1 Uncapacitated competitive starting function

Figure 27 shows the pro�ts versus iteration � for the no capacity limit case starting from

the uncapacitated competitive supply function. (In this �gure and all subsequent �gures

illustrating the �ve �rm example, �rm 1 is shown as a dashed line, �rms 2 and 5 have

identical costs and capacities and are shown superimposed as a dash-dot line, �rm 3 is

shown as a solid line and �rm 4 is shown as a dotted line.) The leftmost points in �gure 27

show the pro�ts if each �rm were to bid the uncapacitated competitive supply function.

That is, these are the pro�ts if each �rm bid competitively.

Figure 28 shows the corresponding supply functions at iteration 100. The price-duration

curve for iteration 100 is shown in �gure 29. The peak realized price is 29 pounds per MWh.

11.1.2 Uncapacitated a�ne SFE starting function

Figure 30 shows the pro�ts versus iteration � for the no capacity limit case starting from

the uncapacitated a�ne SFE supply function. Pro�ts are identical in every iteration. The

leftmost points in �gure 30 show the pro�ts if each �rm were to bid the uncapacitated a�ne

SFE supply function. That is, these are the equilibrium pro�ts if the �rms are required to

bid a�ne supply functions.

Figure 31 shows the corresponding supply functions at iteration 100, which are identical

to the uncapacitated a�ne SFE. The price-duration curve for iteration 100 is shown in

�gure 32. The peak realized price is between 32 and 33 pounds per MWh.

11.1.3 Uncapacitated Cournot starting function

Figure 33 shows the pro�ts versus iteration � for the no capacity limit case starting from the

uncapacitated Cournot supply function. The leftmost points in �gure 33 show the pro�ts

if each �rm were to bid the uncapacitated Cournot supply function. That is, these are the

pro�ts if Cournot competition occurs at each time in the time horizon without any obligation

to bid a supply function that is consistent across the whole time horizon.

Figure 34 shows the corresponding supply functions at iteration 100. The price-duration

curve for iteration 100 is shown in �gure 35. The peak realized price is again between 32

and 33 pounds per MWh.

11.1.4 Summary

From the perspectives of:

� the pro�t;

� the shape of the supply functions over the range of realized prices; and,

� the price-duration curves,

the results at iteration 100 starting from the uncapacitated a�ne SFE S?a�ne and the un-

capacitated Cournot functions are very similar. However, these two results di�er from the

results at iteration 100 starting from the uncapacitated competitive supply function. In
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tion.
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Figure 28: Supply functions

at iteration 100 for case

of no capacity constraints,

starting from the uncapac-

itated competitive supply

function.
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curve at iteration 100 for
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Figure 30: Pro�ts versus

iteration for case of no

capacity constraints, start-

ing from the uncapacitated

a�ne SFE supply function.
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Figure 31: Supply functions

at iteration 100 for case

of no capacity constraints,

starting from the uncapac-

itated a�ne SFE supply

function.
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curve at iteration 100 for
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Figure 33: Pro�ts versus

iteration for case of no

capacity constraints, start-

ing from the uncapacitated

Cournot supply function.
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Figure 34: Supply functions

at iteration 100 for case

of no capacity constraints,

starting from the uncapaci-

tated Cournot supply func-

tion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

t

P (t)

Figure 35:

Price-duration curve at it-

eration 100 for case of no

capacity constraints, start-

ing from the uncapacitated

Cournot supply function.

66



0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

Si(p)

p

Figure 36: Piece-wise a�ne

SFE constructed according

to [8].

particular, compared to the results at iteration 100 starting from the a�ne SFE or Cournot

supply functions:

� the pro�ts at iteration 100 starting from the uncapacitated competitive starting func-

tion are about 15% lower and

� the values at iteration 100 of Si(p) starting from the uncapacitated competitive starting

function are considerably higher for prices above about 20 pounds per MWh.

The numerical results at iteration 100 show two candidate equilibria and there may be a

continuum of equilibria between these two. We consider the relative range of the pro�ts for

the two candidate equilibria. For �rm 1, for example, the range of pro�ts at iteration 100

over the various start functions is from about 27 to 32, a range of 5.

The pro�ts that would accrue to �rm 1 if all �rms bid the uncapacitated Cournot sup-

ply function are about 104. The pro�ts that would accrue to �rm 1 if all �rms bid the

uncapacitated competitive supply function are about 16. This is a range of about 88.

Combining these observations, the range of pro�ts at iteration 100 for �rm 1 over the var-

ious start functions is only about 6% of the range of pro�ts for �rm 1 between uncapacitated

competitive and uncapacitated Cournot outcomes. That is, the range of SFE pro�ts is rela-

tively small. Similar observations apply for the other �rms. Again, the range of apparently

stable equilibria may be an artifact of the numerical framework.

11.2 Minimum capacity constraints

In this section, we use a reduced demand with N(0) = 10, N(1) = 1 in order to investigate

the e�ects of minimum capacity constraints during o�-peak times. In [8], piece-wise a�ne

(but not continuous) SFEs are exhibited in the case of minimum capacity constraints. In

this SFE, the equilibrium supply function of a �rm i is discontinuous at any price p where

a rival j 6= i has cost function satisfying aj = p. Using the results from [8] for the �ve �rm

example system results in the supply functions shown in �gure 36.
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We used the software to solve the minimum capacity constraints, no price cap, and

nonlinear bid supply function case for the demand speci�ed byN(0) = 10,N(1) = 1. Because

the supply functions shown in �gure 36 are an equilibrium in piece-wise a�ne functions, we

used this as one of the starting functions (and will refer to it as S?a�ne.) Since we use a

piece-wise linear and continuous representation of functions, we can only approximate the

jump in this function at p = 12 pounds per MWh. We also used the competitive and

Cournot starting functions and represented the minimum capacity limits in these functions

by requiring the functions to be non-negative.

11.2.1 Competitive starting function

Figure 37 shows the pro�ts versus iteration � for the minimum capacity limit case starting

from the uncapacitated competitive supply function. The leftmost points in �gure 37 show

the pro�ts if each �rm were to bid competitively. (The axes of the graphs in this section

di�er from that in section 11.1.)

Figure 38 shows the corresponding supply functions at iteration 100. The price-duration

curve for iteration 100 is shown in �gure 39. The peak realized price is 15 pounds per MWh.

11.2.2 Piece-wise a�ne SFE starting function

Figure 40 shows the pro�ts versus iteration � for the minimum capacity limit case starting

from the uncapacitated a�ne SFE supply function. Pro�ts are almost identical in every

iteration.

Figure 41 shows the corresponding supply functions at iteration 100, which are similar to

the piece-wise a�ne SFE S?a�ne, except that the discontinuity at p = 12 pounds per MWh

in S?a�ne is smoothed o� in the numerical results at iteration 100. Figure 40 shows that the

smoothing o� had essentially no e�ect on the pro�ts of the �rms. The price-duration curve

for iteration 100 is shown in �gure 42. The peak realized price is about 16 pounds per MWh.

11.2.3 Cournot starting function

Figure 43 shows the pro�ts versus iteration � for the minimum capacity limit case starting

from the Cournot supply function. The leftmost points in �gure 43 show the pro�ts if each

�rm were to bid the Cournot supply function. That is, these are the pro�ts if Cournot

competition occurs at each time in the time horizon without any obligation to bid a supply

function that is consistent across the whole time horizon.

Figure 44 shows the corresponding supply functions at iteration 100. The price-duration

curve for iteration 100 is shown in �gure 45. The peak realized price is about 16 pounds per

MWh.

11.2.4 Summary

From the perspectives of:

� the pro�t;

� the shape of the supply functions over the range of realized prices; and,
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Figure 37: Pro�ts versus

iteration for case of mini-

mum capacity constraints,

starting from the competi-

tive supply function.
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Figure 38: Supply functions

at iteration 100 for case

of minimum capacity con-

straints, starting from com-

petitive supply function.
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uncapacitated competitive

supply function.
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Figure 40: Pro�ts versus

iteration for case of mini-

mum capacity constraints,

starting from the piece-wise

a�ne SFE supply function.
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Figure 41: Supply functions

at iteration 100 for case

of minimum capacity con-

straints, starting from the

piece-wise a�ne SFE sup-

ply function.
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Figure 42: Price-duration

curve at iteration 100 for

case of minimum capacity

constraints, starting from

the piece-wise a�ne SFE

supply function.
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Figure 43: Pro�ts versus

iteration for case of mini-

mum capacity constraints,

starting from Cournot sup-

ply function.
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Figure 44: Supply func-

tions at iteration 100 for

case of minimum capacity

constraints, starting from

Cournot supply function.
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Figure 45: Price-duration

curve at iteration 100 for

case of minimum capacity

constraints, starting from

Cournot supply function.
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� the price-duration curves,

the results at iteration 100 starting from the piece-wise a�ne SFE S?a�ne and the Cournot

functions are very similar. However, these two results di�er from the results at iteration

100 starting from the competitive supply function. In particular, compared to the results at

iteration 100 starting from the a�ne SFE or Cournot supply functions:

� the pro�ts at iteration 100 starting from the uncapacitated competitive starting func-

tion are again somewhat lower and

� the values at iteration 100 of Si(p) starting from the uncapacitated competitive starting

function are higher for prices above about 12 pounds per MWh.

The numerical results at iteration 100 again show two candidate equilibria. However, the

range of SFE pro�ts is again relatively small.

11.3 Base case

We used the software to seek the equilibrium for the base case assumptions, which involves

capacity constraints and a price cap.

11.3.1 Starting from capacitated competitive

Figure 46 shows the pro�ts versus iteration � for the base case assumptions starting from the

capacitated competitive supply function. The leftmost points in �gure 46 show the pro�ts

if each �rm were to bid the capacitated competitive supply function. That is, these are the

pro�ts if the �rms bid competitively at all times. The price-duration curve if each �rm were

to bid the capacitated competitive supply function is shown in �gure 24. (The axes of the

graphs in this section di�er from that in section 11.2, but are similar to that in section 11.1.)

Pro�ts at iteration 100 are considerably higher than in the uncapacitated case and more

than double the pro�ts that would accrue if the capacitated competitive supply functions

were bid. As previously, �rms 2 and 5 have identical costs and capacities, so they appear

superimposed as the dash-dot curve.

Figure 47 shows the supply functions at iteration 100. The price-duration curve for

iteration 100 is shown in �gure 48.

11.3.2 Starting from capacitated a�ne SFE

Figure 49 shows the pro�ts versus iteration � for the base case assumptions starting from the

capacitated a�ne SFE supply function. The leftmost points in �gure 49 show the pro�ts if

each �rm were to bid the capacitated a�ne SFE supply function. The price-duration curve

if each �rm were to bid the capacitated a�ne SFE supply function is shown in �gure 25.

Pro�ts at iteration 100 are again considerably higher than if all �rms bid the capacitated

a�ne starting function.

Figure 50 shows the supply functions at iteration 100. The price-duration curve for iter-

ation 100 is shown in �gure 51. The results at iteration 100 starting from capacitated a�ne

SFE are similar to the case of starting from the capacitated competitive supply function.
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Figure 46: Pro�ts versus

iteration for base case as-

sumptions starting from ca-

pacitated competitive.
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Figure 47: Supply functions

at iteration 100 for base

case assumptions starting

from capacitated competi-

tive.
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Figure 48: Price-

duration curve at iteration

100 for base case assump-

tions starting from capaci-

tated competitive.
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Figure 49: Pro�ts versus

iteration for base case as-

sumptions starting from ca-

pacitated a�ne SFE.
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Figure 50: Supply functions

at iter-

ation 100 for base case as-

sumptions starting from ca-

pacitated a�ne SFE.
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Figure 51: Price-

duration curve at iteration

100 for base case assump-

tions starting from capaci-

tated a�ne SFE.
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11.3.3 Starting from price-capped Cournot

Figure 52 shows the pro�ts versus iteration � for the base case assumptions starting from

the price-capped Cournot supply function. The leftmost points in �gure 52 show the pro�ts

if each �rm were to bid the price-capped Cournot supply function. That is, these are the

equilibrium pro�ts if price-capped Cournot competition occurs at each time in the time

horizon without any obligation to bid a supply function that is consistent across the time

horizon. The price-duration curve if each �rm were to bid the price-capped Cournot supply

function is shown in �gure 26.

Pro�ts at iteration 100 are considerably lower than if all �rms bid the price-capped

Cournot supply function.

Figure 53 shows the supply functions at iteration 100. The price-duration curve for

iteration 100 is shown in �gure 54. The supply curves di�er signi�cantly from the previous

cases for prices less than 16 pounds per MWh; however, these prices are below the minimum

realized price and so are not relevant in the calculation of pro�ts.

11.3.4 Starting from price-capped Cournot with reduced price minimum

Figure 55 shows the pro�ts versus iteration � for the base case assumptions starting from the

price-capped Cournot supply function, except that the price minimum was reduced to p = 8

pounds per MWh. Figure 56 shows the supply functions at iteration 100. The price-duration

curve for iteration 100 is shown in �gure 57. The results are similar to �gures 52{54 except

that the price-duration curve is slightly di�erent for prices between 25 and 35 pounds per

MWh.

11.3.5 Reduced number of break-points

Figure 58 shows the pro�ts versus iteration � for the base case assumptions starting from the

capacitated a�ne SFE supply function but with only 20 break-points in the supply function.

Figure 59 shows the supply functions at iteration 100.

Figures 50 and 59 both show the results at iteration 100 starting from the capacitated

a�ne SFE starting function. The di�erence is that �gure 50 involves supply functions with 40

break-points while �gure 59 involves supply functions with 20 break-points. The di�erences

between the supply functions in these �gures is an artifact of the numerical technique. The

di�erences seem qualitatively to be of the same magnitude as the di�erences between these

�gures and the results at iteration 100 for the other starting functions. Consequently, we

hypothesize that the di�erences in the supply functions at iteration 100 for the various

starting functions are all artifacts of the numerical technique and not indicative of multiple

equilibria.

The price-duration curve for iteration 100 starting from the capacitated a�ne SFE supply

function with 20 break-points is shown in �gure 60. The results at iteration 100 are slightly

di�erent from the previous results.
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Figure 52: Pro�ts ver-

sus iteration for base case

assumptions starting from

price-capped Cournot.
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Figure 53: Supply functions

at iteration 100 for base

case assumptions starting

from price-capped Cournot.
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Figure 54: Price-

duration curve at iteration

100 for base case assump-

tions, starting from price-

capped Cournot.
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Figure 55: Pro�ts ver-

sus iteration for base case

assumptions starting from

price-capped Cournot but

with reduced price mini-

mum of p = 8 pounds per

MWh.
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Figure 56: Supply functions

at iteration 100 for base

case assumptions starting

from price-capped Cournot

but with reduced price min-

imum of p = 8 pounds per

MWh.
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Figure 57: Price-

duration curve at iteration

100 for base case assump-

tions, starting from price-

capped Cournot but with

reduced price minimum of

p = 8 pounds per MWh.
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Figure 58: Pro�ts versus

iteration for base case as-

sumptions starting from ca-

pacitated a�ne SFE, ex-

cept that supply functions

have 20 break-points.
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Figure 59: Supply functions

at

iteration 100 for base case

assumptions starting from

capacitated a�ne SFE, ex-

cept that supply functions

have 20 break-points.
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Figure 60: Price-duration

curve at

iteration 100 for base case

assumptions starting from

capacitated a�ne SFE, ex-

cept that supply functions

have 20 break-points.
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Figure 61: Supply func-

tion constructed according

to recipe in [8].

11.3.6 Summary

Given the base case supply and demand con�guration, the results at iteration 100 from all

the starting functions, as shown in �gures 46{60, are similar from the perspectives of:

� the pro�ts,

� the general shape of the supply functions over the range of realized prices, (between

about 16 and 40 pounds per MWh), and

� the form of the price-duration curve.

The supply functions at iteration 100 di�er in detail in the range of realized prices depending

on the starting function. For example, there are points of apparent non-di�erentiability in

the supply functions and the location of these points di�ers from starting function to starting

function. However, all starting functions have evidently converged towards similar equilibria.

That is, for the base case there is only a very small range of multiple equilibria.

All �rms have roughly the same marginal costs at peak capacity of approximately 27

pounds per MWh. However, in the supply functions at iteration 100, the largest two �rms,

3 and 4, maximize their pro�ts by withholding capacity so that prices are well in excess of

27 pounds per MWh for more than 45% of the time horizon.

The smallest two �rms, 2 and 5, (represented by the leftmost of the supply function

curves) bid in all their capacity when prices reach about 33 pounds per MWh. In contrast,

the largest two �rms do not provide all their capacity until the price reaches the price cap of

40 pounds per MWh. Moreover at prices above 35 pound per MWh, the largest two �rms

behave much less competitively than they do at low prices because the other three �rms

have reached their full capacity and no longer contribute to the slope of the residual demand

faced by the large �rms.

The supply functions of �rms 1, 2, and 5 are concave over most of the range realized

prices. These �rms are at their capacity constraints at the peak realized capacity, so the

concavity of their supply functions does not indicate an unstable equilibrium. On the other
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hand, �rms 3 and 4 are not at their capacity constraints. Note that their supply functions

at prices near to the maximum realized price are not concave. This is also consistent with

the stability analysis in section 5.

The price at peak demand is just below the price cap. The prices at lower demands are

signi�cantly lower. SFE competition combined with a price cap has prevented prices from

staying near to the price cap, except at peak demand.

For prices below about 20 pounds per MWh, corresponding to the right hand third

of the price-duration curve, the supply functions and the price-duration curve are similar

in appearance to the uncapacitated case. (Compare, for example, to �gures 31 and 32,

respectively.) However, it is clear that the capacity constraints have caused a signi�cant

shift in the supply function for prices above 20 pounds per MWh even though production

at this price is only less than half of capacity. The presence of capacity constraints causes

signi�cant price mark-ups even at demands far below the peak.

Despite the considerable mark-ups, the prices are considerably lower than if the �rms were

to bid the price-capped Cournot supply function. (Compare the prices to �gure 26.) The

requirement that the bids be consistent across the time horizon has signi�cantly a�ected the

outcome, reducing equilibrium pro�ts to about half what they would be if the price-capped

Cournot supply functions were bid.

Conversely, the prices are considerably higher for much of the time horizon than if each

�rm were to bid the capacitated a�ne SFE starting function. This con�rms that it is

important to explicitly consider the e�ect of the capacity constraints on the equilibrium and

that the equilibrium supply functions are not well approximated by naively truncating an

uncapacitated SFE solution.

In [8], an ad hoc approach is taken to incorporating capacity constraints. Applying the

recipe in [8] for constructing supply functions results in �gure 61. The recipe in [8] provides

a reasonable estimate of the equilibrium supply bids in this case for �rms 1,2, and 5 (the

smallest three �rms). However, the recipe predicts less supply than the calculated equilibria

for �rms 3 and 4 at high prices.

The recipe in [8] does not explicitly consider the load-duration characteristic. The recipe

sets supply at high prices based only on competition between �rms 3 and 4 at high prices,

but the e�ect of this is to limit the supply of these generators at lower prices. (See the

vertical part of the supply curves for �rms 3 and 4 between about 22 and 37 pounds per

MWh in �gure 61.) The recipe fails to fully value the sales opportunities for �rms 3 and 4

at prices between 22 and 37 pounds per MWh. In general, any recipe that seeks to de�ne

the supply function independently of the load-duration characteristic will fail to make the

pro�t maximizing trade-o� between withholding at high prices and sales opportunities at

low prices.

11.4 Varying the price cap

In this section we consider varying the price cap.
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11.4.1 Starting from price-capped Cournot

Figure 62 shows the pro�ts versus iteration � for the base case assumptions starting from the

price-capped Cournot supply function, except that the price cap was increased to 50 pounds

per MWh. Figure 63 shows the supply functions at iteration 100. The price-duration curve

for iteration 100 is shown in �gure 64. (Note that the price axes on these graphs has a

di�erent scale to the previous graphs.)

Compared to the base case, the supply functions for the increased price cap case are

signi�cantly di�erent for prices above 30 pounds per MWh. That is, the price cap a�ects

supply at prices well below the price cap. In particular, raising the price cap yields further

withholding of supply compared to the base case even at prices well below the base case price

cap. Pro�ts are up to 20% higher than in the base case, due primarily to the withholding of

supply until prices become close to the price cap. This suggests that there is considerable

value in being able to estimate the maximum marginal cost of generation to set a fairly tight

price cap.

The observation that price caps deter the exercise of market power is well-known from

single period models of interaction [16]. In the SFE case, a further issue is that the price

stays well below the price cap at o�-peak times. That is, the imposition of a single price cap

applying at all times together with the requirement that supply functions remain �xed over

an extended horizon has a similar e�ect to price caps that vary with demand conditions.

11.4.2 Price cap and multiple equilibria

Figure 65 shows the peak realized price at iteration 100 versus the price cap for price caps

in the range of 30 pounds per MWh to 80 pounds per MWh. For each price cap, the result

at iteration 100 for the price-capped Cournot starting function is shown as a cross while the

result at iteration 100 for the capacitated competitive starting function is shown as a circle.

For price caps below about 40 pounds per MWh the peak realized price comes within

about 1 pound per MWh of the price cap. The �rms can coordinate on achieving close to

the price cap. Moreover, for a given price cap the results at iteration 100 are very similar for

both the price-capped Cournot and capacitated competitive starting functions. (The pro�ts

and supply functions at iteration 100 are also similar for the price-capped Cournot and the

capacitated competitive starting functions for each value of the price cap below about 40

pounds per MWh.) That is, when the price cap is binding, there appears to be only a small

range of equilibria exhibited.

In contrast, for values of the price cap above about 50 pounds per MWh the peak realized

price at iteration 100 is in the range of around 45{50 pounds per MWh and there are non-

trivial di�erences between the peak realized prices at iteration 100 for the price-capped

Cournot and the capacitated competitive starting functions. (However, in some of the cases,

the pro�t functions were still changing by more than 0.1% at each iteration, so some of

the di�erence between the Cournot and competitive starting functions may be because the

results at iteration 100 are not close enough to equilibrium.) This suggests that when the

price cap is not binding there is a range of exhibited equilibria.

As discussed in section 6.2.1, we can calculate competitive and Cournot outcomes for

the peak demand conditions. The price at peak demand for competitive bids is p
comp
0 � 27
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Figure 62: Pro�ts ver-

sus iteration for base case

assumptions starting from

price-capped Cournot, ex-

cept for increased price cap.
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Figure 63: Supply functions

at iteration 100 for base

case assumptions starting

from price-capped Cournot,

except for increased price

cap. (Note that that price

axis is scaled di�erently

compared to previous �g-

ures.)
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Figure 64: Price-duration

curve at

iteration 100 for base case

assumptions starting from

price-capped Cournot, ex-

cept for increased price cap.

(Note that the price axis is

scaled di�erently compared

to previous �gures.)
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Figure 65: Maximum ob-

served price versus price

cap. Results starting from

price-capped Cournot are

shown with crosses, while

results starting from ca-

pacitated competitive are

shown with circles.

pounds per MWh. The price at peak demand under Cournot competition is pCournot0 � 80

pounds per MWh.

Even when the price cap is raised to 80 pounds per MWh, the peak realized price at

iteration 100 for the supply function bids is far below 80 pounds per MWh for either starting

function. The range of peak realized prices at iteration 100 for the price-capped Cournot

and the capacitated competitive starting functions is relatively small compared to the peak

Cournot price of 80 pounds per MWh.

In summary, when the price cap is binding on behavior, the range of exhibited equilibria

seems to be very narrow. The price-capped Cournot and the capacitated competitive starting

functions yield essentially the same results at iteration 100. When the price cap is not binding

on behavior, there is a range of equilibrium outcomes; however, this range is relatively

small compared to the di�erence between the price-capped Cournot and the capacitated

competitive starting functions.

11.5 Increased capacities

We increased the capacity of all �rms by 5% compared to the base case. The results for

the price-capped Cournot starting function are shown in �gures 66{68. The results for the

competitive starting function are shown in �gures 69{71. The pro�ts at iteration 100 are

approximately 20% lower for the capacitated competitive starting function compared to the

price-capped Cournot starting function. The range of equilibrium pro�ts is about 12% of the

di�erence in pro�ts between the price-capped Cournot and capacitated competitive supply

functions.

In this case, �rms 1, 2, and 5 reach their capacity below the peak realized price, but the

price cap is not binding. There is a small range of equilibria in this case.

11.6 Increased load factor

The load duration characteristic in the base case has a relatively small load factor of around

30% implying that the supply functions were required to be set for a very long period or
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Figure 66: Pro�ts versus

iteration for base case as-

sumptions except for 5%

increase in all capacities,

starting from price-capped

Cournot.
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Figure 67: Supply functions

at iteration 100 for base

case assumptions except for

5% increase in all capac-

ities, starting from price-

capped Cournot.
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Figure 68: Price-duration

curve at iteration 100 for

base case assumptions ex-

cept for 5% increase in

all capacities, starting from

price-capped Cournot.
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Figure 69: Pro�ts versus

iteration for base case as-

sumptions except for 5%

increase in all capacities,

starting from capacitated

competitive.
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Figure 70: Supply functions

at iteration 100 for base

case assumptions except for

5% increase in all capaci-

ties, starting from capaci-

tated competitive.
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Figure 71: Price-duration

curve at iteration 100 for

base case assumptions ex-

cept for 5% increase in all

capacities, starting from ca-

pacitated competitive.
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that a signi�cant amount of demand was supplied by baseload capacity at prices at or below

the price minimum p or that much of the demand was supplied under forward contracts. We

divided the time horizon into peak and o�-peak conditions and considered the case where

bids were made separately for peak and o�-peak conditions.

11.6.1 Peak conditions

We investigated a case where the load duration characteristic ranged linearly from 20 to

35 GW. This implies a load factor of around 60%. That is, we shortened the time horizon

compared to the base case by omitting the o�-peak times, but the time horizon still covered

the peak conditions.

Figure 72 shows the pro�ts versus iteration � for the base case assumptions starting from

the price-capped Cournot supply function, except that the load-duration characteristic has

been changed so that N(1) = 20. (The value N(0) was kept at 35.) As previously, �rms 2

and 5 have identical costs and capacities, so they appear superimposed. The pro�t functions

are not directly comparable to previous cases since the demand conditions have changed.

Figure 73 shows the supply functions at iteration 100. The supply functions at iteration

100 are very similar to the base case supply functions at iteration 100, over the range of

realized prices. The price-duration curve for iteration 100 is shown in �gure 74.

The results at iteration 100 for the capacitated competitive starting function are essen-

tially the same as for the price-capped Cournot starting function. That is, it appears that

the increase in the load factor has not signi�cantly increased the range of equilibria.

11.6.2 O�-peak conditions

We also investigated a case where the load duration characteristic ranged linearly from 10

to 20 GW. That is, we shortened the time horizon compared to the base case by omitting

the peak times. In this case, the price cap is not binding and so, as in the uncapacitated

case and the increased capacity case, there are multiple solutions having a range of pro�ts.

The range of pro�ts at iteration 100 is around 10% of the di�erence between the pro�ts for

the capacitated competitive and price-capped Cournot supply functions.

11.7 Increasing demand

Finally, we considered increase in demand with the same supply conditions as the base case.

The demand was increased so that rationing was required.

11.7.1 Starting from capacitated a�ne SFE

Figure 75 shows the pro�ts versus iteration � for the base case assumptions starting from

the capacitated a�ne SFE supply function, except that the load-duration characteristic has

been changed so that N(0) = 40. (The value N(1) was kept at 10.) In this case there is not

enough capacity to meet demand at the peak. As previously, �rms 2 and 5 have identical

costs and capacities, so they appear superimposed.

Figure 76 shows the supply functions at iteration 100. The supply functions at iteration

100 are similar to the base case. That is, the di�erence in pro�ts compared to the base case
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Figure 72: Pro�ts versus it-

era-

tion for base case assump-

tions, except for increased

value of N(1). (Note that

the pro�t axis is scaled dif-

ferently compared to previ-

ous �gures.)
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Figure 73: Supply func-

tions at iteration 100 for

base case assumptions, ex-

cept for increased value of

N(1).
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Figure 74: Price-duration

curve at iteration 100 for

base case assumptions, ex-

cept for increased value of

N(1).
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is primarily due to the higher demand in this case, rather than due to changed behavior

because of tightened demand conditions. The price-duration curve for iteration 100 is shown

in �gure 77.

11.7.2 Starting from price-capped Cournot

Figure 78 shows the pro�ts versus iteration � for the base case assumptions starting from the

price-capped Cournot supply function, except that N(0) = 40. Figure 79 shows the supply

functions at iteration 100. The price-duration curve for iteration 100 is shown in �gure 80.

The results at iteration 100 are very similar to the case of starting from the capacitated

a�ne SFE supply function.

11.7.3 Starting from capacitated a�ne SFE with high price cap

Figure 81 shows the pro�ts versus iteration � for the base case assumptions starting from

the capacitated a�ne SFE supply function, except that N(0) = 40 and the price cap is set

to p = 50 pounds per MWh. Note that the pro�t axis has changed compared to previous

�gures because the pro�ts are considerably higher. Figure 82 shows the supply functions at

iteration 100. The price-duration curve for iteration 100 is shown in �gure 83. Note that

the price axes have been changed compared to some of the previous �gures.

11.7.4 Bid caps

The previous cases were tested with the alternate rule of market wide bid caps instead of

price caps. The bid supply functions were not signi�cantly di�erent in this case; however,

pro�ts were higher than for price caps because prices exceeded the bid cap whenever supply

is tight.

11.7.5 Summary

Pro�ts are considerably higher than in the previous cases. However, for the price cap of

40 pounds per MWh, most of the di�erence in pro�ts compared to the base case is due to

increased demand alone rather than changes in bid behavior. Despite the greater potential

for exploitation of market power due to the need for rationing, the presence of the price cap

and the requirement to bid consistently across the time horizon has limited the scope to

increase pro�ts.

In the case of the high price cap, however, the combination of the need for rationing and

the increased price cap has led to even higher pro�ts. The two �rms with large capacity

can withhold capacity until high prices are reached. This again demonstrates the value of a

fairly tight price cap.

11.8 Characteristics of equilibrium solutions

As argued in corollary 11 of section 7, the solutions are always strictly increasing. As

suggested in section 6.4, the equilibrium supply functions exhibit discontinuities in their
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Figure 75: Pro�ts versus it-

eration for case of rationing,

starting from capacitated

a�ne SFE.
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Figure 76: Supply functions

at iteration 100 for case of

rationing, starting from ca-

pacitated a�ne SFE.
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Figure 77: Price-duration

curve at iteration 100 for

case of rationing, start-

ing from capacitated a�ne

SFE.
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Figure 78: Pro�ts versus it-

eration for case of rationing

starting from price-capped

Cournot.
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Figure 79: Supply functions

at iteration 100 for case

of rationing starting from

price-capped Cournot.
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Figure 80: Price-duration

curve at iteration 100 for

case of rationing starting

from price-capped Cournot.

(Note that the price axis is

scaled di�erently compared

to previous �gures.)
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Figure 81: Pro�ts versus

iteration for high demand

and high price cap. (Note

that the pro�t axis is scaled

di�erently compared to pre-

vious �gures.)
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Figure 82: Supply functions

at iteration 100 for high de-

mand and high price cap.

(Note that the price axis is

scaled di�erently compared

to previous �gures.)
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Figure 83: Price-duration

curve at iteration 100 for

high demand and high price

cap. (Note that the price

axis is scaled di�erently

compared to previous �g-

ures.)
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derivatives. As shown in corollary 12, between the discontinuities, the equilibrium solutions

are consistent with solutions of (16) corresponding to a subset of the �rms.

12 Conclusion

The main results of this paper are:

� In markets with heterogeneous �rms and capacity constraints, the di�erential equation

approach to �nding the equilibrium supply function may not be e�ective by itself be-

cause the non-decreasing constraints, which couple decisions across the time horizon,

are likely to be binding. An alternate approach, of iterating in the space of supply func-

tions, is computationally intensive and has theoretical drawbacks of its own. However,

based on the case studied, it appears to produce consistent and useful results.

� The range of supply function equilibria may be very small when capacity is fairly

tight and there are binding price caps. This market condition is the most critical

from a market power perspective. Even when price caps are not binding, the range

of stable equilibria appears relatively small compared to the di�erence between the

competitive and the Cournot outcomes. This strengthens the case for SFE analysis

when market rules require consistent bids across a time horizon, particularly when

capacity constraints and price caps are binding.

� Requiring supply functions to remain �xed over an extended time horizon appears to

reduce the incentive to mark up prices compared to the Cournot outcome. SFEs that

achieve pro�ts that are close to Cournot pro�ts are unstable and consequently should

not be observed in the market.

� A single price cap imposed at all times may have signi�cant e�ects both on- and o�-

peak.

As discussed in Borenstein [16], there are various problems facing wholesale electricity

markets. Borenstein discusses the value of long-term contracting, real-time pricing, and price

caps to a smoothly functioning electricity market. As well as the advantages cited in [16],

long-term contracting can also reduce the e�ective load factor in the day-ahead market,

which can rule out some of the least competitive equilibria. In this paper, the analysis

of stability and the numerical studies suggest that requiring bid functions to be consistent

over an extended time horizon having a large variation of demand may also be valuable in

mitigating extreme prices and market power.
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