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Introduction 
The unit commitment and economic dispatch problem introduces non-convexities into the 
electricity market model.  Because of these non-convexities, there may be no set of 
energy prices that supports the economic dispatch as the market clearing solution. This 
gives rise to the uplift that balances the difference between optimal profits and actual 
profits at the given energy prices.  Extended locational marginal prices (ELMP) derive 
from the convex hull of the unit commitment and economic dispatch problem.  These 
ELMP prices minimize the uplift associated with the difference between the market 
clearing solution and the optimal commitment and dispatch.  This minimum uplift 
includes transmission congestion and loss revenues that determine the revenue adequacy 
of financial transmission rights. 
 

Electricity Market Model 
The stylized version of the unit commitment and dispatch problem for a fixed demand y  
is formulated in (Gribik, Hogan, and Pope 2007) as: 
 
 
 

 
 

 
Indices: 
  nodes i (and unit at node) 
  time periods t 
  transmission constraints k. 
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0 if unit i is not started in period t
1 if unit i is started in period t

0 if unit i is off in period t
1 if unit i is on in period t

 output of unit i in period t
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Constants: 

 vector of nodal loads in period t
minimum output from unit i in period t if unit is on
maximum output from unit i in period t if unit is on

maximum ramp from unit i between period t-1 
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and period t
Cost to start unit i in period t

No load cost for unit i in period t if unit is on

Maximum flow on transmission constraint k in period t.
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Functions: 
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( )

 Production cost above No Load Cost to produce energy from unit i in period t

 Losses in period t as a function of net nodal withdrawals

 Flow on constraint k in period t as 
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 This simplified unit commitment and dispatch problem serves to illustrate the 
ideas.  However, the basic results in (Gribik, Hogan, and Pope 2007) are more general 
and would encompass explicit consideration of demand bidding, minimum run times, 
integer decision variables for piecewise characterizations of non-convex functions and 
related non-convex formulations. 
 
 Let * * * *start , on , g , d be a solution to the unit commitment and economic dispatch 
problem.  Hence, 
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 A version of the convex hull formulation utilizes the dual with respect to the load, 
loss and transmission constraints, as in (Gribik, Hogan, and Pope 2007). 
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(1) 

 
Suppose we have a solution for the ELMP prices, p,λ,μ .  Also assume that we 

have a solution, o o o ostart , on , g , d , for the interior unit commitment and dispatch 
problem in (1).  This is a market clearing solution under the ELMP prices.  This solution 
would be optimal if we simply announced the ELMP prices and let all the market 
participants solve for a profit maximizing solution.  Note that this solution includes an 
endogenous choice of demand as well as the level of generation. 
 

Given the solution to the commitment variables, o ostart , on , the inner problem 
reduces to a standard economic dispatch problem.  With sufficient regularity conditions 
on the transmission and loss constraints, a strong duality theorem yields the result that the 
market clearing solution satisfies the constraints (Bazaraa, Sherali, & Shetty, 2006, 
Theorem 6.2.5).  In particular, given the market clearing solution for the commitment 
variables, and holding these fixed, we assume that the remaining problem reduces to a 
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standard economic dispatch problem with no duality gap.1   Therefore we satisfy the 
saddle point conditions and: 
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It follows that the ELMP defined above as the solution p  is also an ELMP 

solution for the corresponding problem including the loss and transmission limits 
included as constraints. 
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(2) 

                                                 
 
1  The transmission constraints would easily admit to a feasible solution with no constraints binding, 
for example at zero load.  The only difficulty then would be the loss equation which is nonlinear.  The 
interior solution point would be possible for a slightly perturbed version of the problem with a small 
violation, and these perturbed problems would satisfy the (strong) Slater condition.  Similarly, a linearized 
loss equation would be sufficient to meet the regularity condition.  (Bazaraa, Sherali, and Shetty 2006)  
Here we assume that some sufficient regularity condition would apply. 
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In addition, we have both original cost function and the corresponding convex 

hull values are the same. 
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 When interpreting the nature of the ELMP, therefore, this equivalence of (1) and 
(2) allows us to choose the more convenient form in characterizing the prices, solutions, 
and the associated uplift or duality gap. 
 
 For example, the market clearing solution is an economic dispatch (and 
commitment) for demand od .   We have 
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At this level of demand, there is no duality gap.  Hence, the market clearing 

solution and the ELMP prices have a natural interpretation as the economic dispatch (and 
commitment) and associated LMPs for this endogenous level of demand, which may 
differ from the actual level of demand in *d . 

 
Similarly, the duality gap equals the minimum uplift (Gribik, Hogan, and Pope 

2007), and this uplift is: 
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We can rewrite this uplift as: 
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Using the ELMP prices, the first term is the generator profit under the associated 

market clearing solution; the second term is the generator profit with the optimal unit 
commitment and dispatch solution; the third term is the congestion and loss surplus for 
the market clearing solution; and the fourth term is the congestion and loss surplus for the 
optimal unit commitment and dispatch. 

 
In summary, using the ELMP prices, the minimum uplift decomposes into the 

difference between the market clearing generator profits and the economic dispatch 
generator profits, and the difference between the market clearing transmission revenues 
and the economic dispatch transmission revenues. 
 

Financial Transmission Rights 
The definition of financial transmission rights includes many variants that are obligations 
or options, account for losses or only for transmission congestion (Hogan 2002).  In a 
lossless model, congestion rights admit a series of revenue adequacy conditions for 
obligations and options.  In models with losses, unbalanced FTRs with losses included 
have a similar series of revenue adequacy conditions.  Mixing the definitions, most 
notably by using congestion-only rights in a framework with losses, may violate some of 
these results.  However, at present we are interested in an interpretation of the revenue 
adequacy results with ELMP prices, assume that we are dealing with losses and the FTRs 
include the losses. 
 

The FTRs define a vector of net loads that are simultaneously feasible.  Hence, we 
assume that: 

 
( ) ( )

( ) max

0,

.

T
t t t

kt t kt

LossFn

Flow F

− =

≤

e FTR FTR

FTR
 

 
Then with a market clearing solution, we have by the usual arguments that the 

FTRs are revenue adequate: 
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In other words, the transmission congestion and loss surplus revenues under the 

market clearing solution would be greater than the payments for the FTRs.  The FTRs 
would be revenue adequate with the market clearing solution implied by the ELMP 
prices.  The difficulty is that revenue adequacy may not apply to the economic dispatch 
solution, * * * *start , on , g , d .  This is another aspect of the difficulty that the economic 
dispatch may not be supported by any prices, including the ELMP prices p .2  The 
deficiency is bounded by the difference between the transmission revenues in the third 
and fourth terms of the decomposition above.  In other words, 
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The transmission revenue that would be collected under the market clearing 

solution would be sufficient to meet the obligations under the FTRs.  However, this may 
not be true for the revenues under the economic dispatch, which is not a market clearing 
solution at the ELMP prices, even though the FTRs are simultaneously feasible.  
However, the uplift amount of ( ) ( )* *T o o T

t t t t t t
t t

− − −∑ ∑p d g p d g  is included in the 

decomposition of the total uplift that is minimized by the ELMP prices.  This uplift 
payment would be enough to ensure revenue adequacy of FTRs under ELMP pricing. 

References 

Bazaraa, M.S., H.D. Sherali, and C.M. Shetty. 2006. Nonlinear programming: 
theory and algorithms. Third Edit. Wiley-Interscience. 
http://books.google.com/books?hl=en&lr=&id=qIRDEgYesVUC&oi=fnd&pg=PR12&dq
=Nonlinear+programming+theory+and+Algorithms&ots=lpURwCXr2O&sig=47haYranl
XgRWPJSJjzQNwKapXY. 

Gribik, Paul R., William W. Hogan, and Susan L. Pope. 2007. Market-Clearing 
Electricity Prices and Energy Uplift. 
http://www.hks.harvard.edu/fs/whogan/Gribik_Hogan_Pope_Price_Uplift_123107.pdf. 

Hogan, William W. 2002. Financial transmission right formulations. 
http://www.hks.harvard.edu/fs/whogan/FTR_Formulations_033102.pdf. 

 

                                                 
 
2 Here we assume that we are dealing with the same grid.  Revenue adequacy under ELMP prices is a 
different problem than assuring revenue adequacy when the capacity of the grid changes and the FTRs are 
not simultaneously feasible for any values of the integer variables. 



 
 

8

Endnotes 
                                                 
 
i Michael D. Cadwalader is a principal with LECG, LLC. 
ii Paul R. Gribik is the Director of Market Development and Analysis for the Midwest Independent System 
Operator (MISO). 
iii William W. Hogan is the Raymond Plank Professor of Global Energy Policy, John F. Kennedy School of 
Government, Harvard University and a Director of LECG, LLC.  This paper draws on work for the Harvard 
Electricity Policy Group and the Harvard-Japan Project on Energy and the Environment.  The author is or 
has been a consultant on electric market reform and transmission issues for Allegheny Electric Global 
Market, American Electric Power, American National Power, Aquila, Australian Gas Light Company, 
Avista Energy, Barclays, Brazil Power Exchange Administrator (ASMAE), British National Grid 
Company, California Independent Energy Producers Association, California Independent System Operator, 
Calpine Corporation, Canadian Imperial Bank of Commerce, Centerpoint Energy, Central Maine Power 
Company, Chubu Electric Power Company, Citigroup, Comision Reguladora De Energia (CRE, Mexico), 
Commonwealth Edison Company, COMPETE Coalition, Conectiv, Constellation Power Source, Coral 
Power, Credit First Suisse Boston, DC Energy, Detroit Edison Company, Deutsche Bank, Duquesne Light 
Company, Dynegy, Edison Electric Institute, Edison Mission Energy, Electricity Corporation of New 
Zealand, Electric Power Supply Association, El Paso Electric, GPU Inc. (and the Supporting Companies of 
PJM), Exelon, GPU PowerNet Pty Ltd., GWF Energy, Independent Energy Producers Assn, ISO New 
England, Luz del Sur, Maine Public Advocate, Maine Public Utilities Commission, Merrill Lynch, 
Midwest ISO, Mirant Corporation, JP Morgan, Morgan Stanley Capital Group, National Independent 
Energy Producers, New England Power Company, New York Independent System Operator, New York 
Power Pool, New York Utilities Collaborative, Niagara Mohawk Corporation, NRG Energy, Inc., Ontario 
IMO, Pepco, Pinpoint Power, PJM Office of Interconnection, PPL Corporation, Public Service Electric & 
Gas Company, Public Service New Mexico, PSEG Companies, Reliant Energy, Rhode Island Public 
Utilities Commission, San Diego Gas & Electric Corporation, Sempra Energy, SPP, Texas Genco, Texas 
Utilities Co, Tokyo Electric Power Company, Toronto Dominion Bank, Transalta, Transcanada, 
TransÉnergie, Transpower of New Zealand, Tucson Electric Power, Westbrook Power, Western Power 
Trading Forum, Williams Energy Group, and Wisconsin Electric Power Company.  The views presented 
here are not necessarily attributable to any of those mentioned, and any remaining errors are solely the 
responsibility of the author. (Related papers can be found on the web at www.whogan.com ). 
iv Susan L. Pope is a Principal with LECG, LLC. 


